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Summary: In biomedical science, analyzing treatment effect heterogeneity plays an essential role in assisting

personalized medicine. The main goals of analyzing treatment effect heterogeneity include estimating treatment

effects in clinically relevant subgroups and predicting whether a patient subpopulation might benefit from a particular

treatment. Conventional approaches often evaluate the subgroup treatment effects via parametric modeling and can

thus be susceptible to model mis-specifications. In this paper, we take a model-free semiparametric perspective

and aim to efficiently evaluate the heterogeneous treatment effects of multiple subgroups simultaneously under the

one-step targeted maximum-likelihood estimation (TMLE) framework. When the number of subgroups is large, we

further expand this path of research by looking at a variation of the one-step TMLE that is robust to the presence

of small estimated propensity scores in finite samples. From our simulations, our method demonstrates substantial

finite sample improvements compared to conventional methods. In a case study, our method unveils the potential

treatment effect heterogeneity of rs12916-T allele (a proxy for statin usage) in decreasing Alzheimer’s disease risk.
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1 Introduction

1.1 Motivation and our contribution

In biomedical studies with observational data, investigators often aim to assess the hetero-

geneity of treatment effects in subpopulations of patients. Such analyses may provide useful

information for patient care and for future medical research. For example, existing studies

suggest that statins–a class of commonly prescribed coronary artery disease (CAD) drugs for

lowering low-density lipoprotein cholesterol concentration–may reduce Alzheimer’s disease

(AD) risk in some, but not all population (Zissimopoulos et al., 2017). Understanding the

heterogeneous treatment effects of statin usage may provide new insights for personalizing

drug prescriptions to prevent AD.

In this paper, we aim to make valid inference on heterogeneous treatment effects in a user-

supplied family of subgroups after adjusting for potential confounding factors with state-of-

the-art machine learning algorithms. Motivated by our case study (Section 7), we work under

the setting that the treatment and outcome variables are binary. The extension of our method

to continuous outcomes is discussed in Web Appendix E.1. Our parameter of interest includes

relative risk under a treatment versus a control in d pre-specified subgroups of interest:

αRR = (αRR,1, . . . αRR,d)
ᵀ, αRR,j =

P
(
Y (1)=1|X∈Aj

)

P
(
Y (0)=1|X∈Aj

) , j = 1, . . . , d, where P
(
Y (1) = 1|X ∈

Aj
)

(or P
(
Y (0) = 1|X ∈ Aj

)
) is the conditional expectations of the potential outcome under

treatment (or control) evaluated in the subgroup Aj. We denote X ∈ Rp as the potential

confounders, and denote {Aj}dj=1 as pre-specified possibly overlapped subgroups. We work

under the classical semi-parametric inference framework, in which we aim to make inference

on the low-dimensional target parameter αRR in the presence of high-dimensional nuisance

parameters (see Section 4.1 for rigorous statements).

In this context, two potential issues emerge when one evaluates the treatment effects for

multiple subgroups. On the one hand, while a commonly used method is to serially divide
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individuals into subgroups based on relevant pre-treatment characteristics and then estimate

the treatment effect in each subgroup with either the (augmented) inverse propensity score

weighting (Rosenbaum and Rubin, 1983) or the targeted maximum likelihood estimator

(TMLE) (van der Laan and Rubin, 2006), this “one-group-at-a-time” approach can be

computationally costly (see Section 3.1 for a concrete example). On the other hand, when

the estimated propensity scores or subgroup proportions are close to zero or one in finite

samples (a phenomenon refereed to as “practical positivity violation” in Petersen et al.,

2012), such approaches can be numerically unstable due to the inverse propensity score or

inverse subgroup proportion weights tending to infinity.

To address such potential issues, we work with a one-step targeted maximum likelihood

estimator that “targets” multiple subgroup treatment effects simultaneously. The so-called

“targeting” step here involves fluctuating the initial plug-in estimator of the nuisance param-

eters in semiparametric models in directions which maximally adjust those initial estimates

per change in the log-likelihood. Furthermore, we propose a variation of the one-step TMLE

that not only targets multiple subgroups simultaneously but is also robust to the presence of

small estimated propensity scores in finite samples. Deviating from the mainstream literature

on the targeted learning, we also look into the problem from an optimization point of view,

where we further demonstrate that such a variation of the one-step TMLE can be viewed as

a reparametrized dual formulation of the primal optimization problem (Web Appendix B).

From our theoretical investigations, we show that the proposed estimator for multiple

subgroup treatment effects attains the semiparametric efficiency bound, and it converges in

distribution to a multivariate Gaussian distribution when the sample size becomes large.

This result thus allows us to construct valid simultaneous confidence intervals and develop

powerful multiple testing procedures fully utilizing the joint dependence among the subgroup

specific test statistics. In addition to these large sample guarantees, through simulation stud-
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ies, we demonstrate that the proposed estimator has substantial finite sample improvements

relative to either applying the classical targeted learning approach (van der Laan and Rose,

2011) or the “double machine learning” frequently adopted in the econometrics literature

(Chernozhukov et al., 2017). From an application point of view, leveraging the observational

data collected from the UK Biobank study, we analyze the differential effects of inheriting

rs12916-T allele (a proxy for statin usage) in decreasing AD risk across multiple subgroups.

1.2 Related literature

The proposed method builds on the foundation of the targeted learning framework which

is, broadly speaking, a meta-learning framework allowing various machine learning algo-

rithms to enter the process of estimating desired target parameters (van der Laan and

Rose, 2011). van der Laan and Rubin (2006) propose the original version of TMLE, which

uses maximum likelihood in a least favourable direction and then performs k-step updates

using the estimated scores, in an effort to better estimate the target parameter. Zheng

and van der Laan (2010) introduce the cross-validated TMLE, which relaxes the stringent

Donsker condition via sample splitting for the initial estimation of the nuisance parameters.

A recent advancement in the targeted learning framework is the one-step TMLE (van der

Laan and Gruber, 2016), which adopts a “universal least favorable submodel” to avoid

excessive data fitting in the locally least favorable submodel. In terms of estimating a vector

of multi-dimensional parameters with TMLE, seminal works by van der Laan and Rose

(2011) and van der Laan and Gruber (2016) develop a universal canonical one-dimensional

submodel such that the one-step TMLE, only maximizing the log-likelihood over a univariate

parameter, solves the multivariate efficient influence curve equation. A recent work (Levy

et al., 2021) adopts this general TMLE approach for estimating the variance of the stratum-

specific treatment effect functions. We also note that the general strategy of TMLE that
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targets multi-dimensional parameters have also been discussed for estimating survival curves

(see, van der Laan and Rose (2018), Chapter 5 for example).

Our proposal contributes to the semiparametric statistics literature. Early work on semi-

parametric statistics (Newey, 1990) provides general efficiency results for the development of

semiparametric estimators. Based on these efficiency results, Robins and Rotnitzky (1992)

propose a general estimating equation approach that solves for the parameter of interest

by setting the efficient score equations to zero. The estimating equation approach is further

discussed in van der Laan and Robins (2003). Bickel et al. (1993) develop a one-step estimator

that adds the empirical average of the efficient influence function to an initial estimator.

Van der Vaart (2000) discusses the use of maximum likelihood estimator and parametric

submodel in semiparametric estimation.

Our work is also tied to the literature on heterogeneous treatment effect estimation in

causal inference. Different from our parameter of interest, Chernozhukov and Semenova

(2018), building on the debiased double machine learning framework (Chernozhukov et al.,

2017), propose to estimate the average treatment effect conditional on a small subset of the

potential confounders. Künzel et al. (2019) propose meta-learning frameworks that estimates

the average treatment conditional on all possible confounders. Unlike our approach, which

efficiently evaluates the treatment effects in pre-specified subgroups, Imai and Ratkovic

(2013) formulate the problem on heterogeneous treatment effect identification from a variable

selection perspective. In this thread on heterogeneity identification, VanderWeele et al. (2019)

provide a nice overview of subgroup selection problems encountered in practice.

2 Causal Framework and Identification

Let {Oi}ni=1 = {(Yi, Ti, Xi)}ni=1 be an independent and identically distributed (i.i.d.) random

sample of the observed binary response variable Y , the treatment indicator variable T ,

and potential confounders X ∈ Rp. In accordance with the Neyman-Rubin causal model
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(Neyman, 1923; Rubin, 1974), we define the potential outcome Y (T ) as the outcome we would

have observed under the treatment assignment T . The observed outcome is thus the potential

outcome variable corresponding to the received treatment, i.e., Y = TY (1) + (1 − T )Y (0).

This framework allows us to characterize the multi-subgroup disease risk under different

treatment arms as: αt = (αt,1, . . . αt,d)
ᵀ, αt,j = P

(
Y (t) = 1|X ∈ Aj

)
, t ∈ {0, 1}, j =

1, . . . , d, where Aj denotes a pre-specified subgroup j. Here, we allow different subgroup to

overlaps, and we assume that the variables used to define the subgroups of interest are based

on X. When comparing disease risks between two treatment arms, our framework allows

practitioners to estimate three popular causal effect measures: relative risk, odds ratio, and

absolute risk difference, across different subgroups, defined as αRR = (αRR,1, . . . αRR,d)
ᵀ,

αRR,j = α1,j/α0,j,αOR = (αOR,1, . . . αOR,d)
ᵀ, αOR,j =

(
α1,j/(1− α1,j)

)
/
(
α0,j/(1− α0,j)

)
, and

αARD = (α1,1 − α0,1, . . . , α1,d − α0,d) (Section 3.3).

The three causal quantities described above are not observable because the potential

outcomes are subject to missingness, meaning that for each individual we observe either the

potential outcome under the control, Y (0), or the potential outcome under the treatment,

Y (1), but never both. Following the mainstream literature in causal inference, we impose the

unconfoundedness, positivity, and stable unit treatment value assumptions (SUTVA) below

to identify our causal parameters of interest:

Assumption 1 (Unconfoundedness): Conditional on X, the treatment assignment is as

good as random, that is T ⊥ Y (1), Y (0)|X.

Assumption 2 (Positivity): For any x ∈ X, t ∈ {0, 1}, there exists a constant c ∈ (0, 1)

such that c < P (T = t|X = x,X ∈ Aj) < 1− c and c < P (Aj) < 1− c, for j = 1, . . . , d.

Assumption 3 (SUTVA): If unit i receives treatment Ti, the observed outcome Yi equals
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the potential outcome Yi(Ti), meaning that the potential outcome for unit i under treatment

Ti is unrelated to the treatment received by other units.

Under Assumption 1-3, we are able to identify αt,j as αt,j = P
(
Y (1) = 1|X ∈ Aj

)
=

EX
[
P (Y = 1|T = t,X ∈ Aj)

]
. Here, by “identify” we mean that under Assumption 1, the

causal effect involving unobserved potential outcomes can be first written as a function of

observed data. Then, within an i.i.d. sample {(Yi, Ti, Xi)}ni=1, under Assumption 2 and 3,

the causal parameter can be estimated (or point identified) at a regular parametric root-n

rate (Khan and Tamer, 2010).

Notation We use P to denote the probability operator and E to denote the expectation

operator. We use capitalized letters to denote random variables, e.g. T , and lower case

letters to denote the realizations of random variables, e.g. t. For t ∈ {0, 1}, we denote

pt(X) = P (Y = 1|T = t,X) as the conditional probability of Y = 1 given T = t and X.

et(X) = P (T = t|X) denotes the conditional probability of T = t given X. Lastly, we define

expit(x) = 1
1+e−x and logit(x) = log( x

1−x).

3 Multiple Subgroup Targeted Learning

In this section, to simplify presentation, we first introduce our method on estimating the

conditional average risk αt for group t ∈ {0, 1} and defer the estimation for other causal

parameters to Section 3.3 and Web Appendix E.2. We shall review the classical one-step

targeted maximum likelihood estimator (TMLE) (van der Laan and Gruber, 2016) in a

single subgroup case, followed by discussing its limitations when naively generalizing it to

the multi-subgroup case. We then introduce the one-step TMLE that directly targets the

multi-subgroup treatment effects simultaneously.
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3.1 Limitation of the classical one-step TMLE

To estimate αt, a natural choice is to apply the one-step TMLE in each subgroup separately.

For a subgroup j, one-step TMLE starts with some initial estimates of pt(X) and et(X) using

the observations in the subgroup Aj, denoted as p̂Inittj (X) and êtj(X). These initial estimates

can be obtained from any state-of-the-art machine learning methods–such as random forest,

gradient boosting (Breiman, 2001), or Highly Adaptive Lasso (HAL) (Benkeser and van der

Laan, 2016)–as long as they are not too far away from the target estimands (see Assumption

5 in Section 4.1 for rigorous specifications). Within a random sample, because p̂Init
tj (X) and

êtj(X) may substantially deviate from the truth, the targeted learning approach identifies

a correction term, ε̂ · Ŝtj(X), that pushes the initial estimates to “concentrate/target” on

the estimand: p̂tj(Xi) = expit
(

logit
(
p̂Init
tj (Xi)

)
+ ε̂ · Ŝtj(Xi)

)
, Ŝtj(Xi) =

1(Xi∈Aj)

P̂ (Aj)

1(Ti=t)
êtj(Xi)

. Here,

P̂ (Aj) =
∑n

i=1 1(Xi∈Aj)

n
, ε̂ captures the magnitude of the correction Ŝtj(Xi) (so called “clever

covariate” in van der Laan and Rubin (2006)), and it is the estimated coefficient of Ŝtj(Xi)

in the logistic regression:

Yi ∼ logit
(
p̂Init
tj (Xi)

)
+ εŜtj(Xi), i ∈ Atj, (1)

that regresses Yi on logit
(
p̂Init
tj (Xi)

)
and Ŝtj(Xi) with a fixed coefficient 1 for logit

(
p̂Init
tj (Xi)

)
.

Here Atj = Aj ∩ {i : Ti = t} contains the subjects with Ti = t in the subgroup Aj. After

this one-step correction, the final estimate α̂one-step
t,j takes the empirical average of p̂tj(Xi):

α̂one-step
t,j = 1

ntj

∑n
i=1 p̂tj(Xi), where ntj is the cardinality of the set Atj.

The regression problem defined in Eq (1) is the essence of the one-step TMLE. Such

a regression problem adaptively learns the difference between p̂Init
tj (·) and ptj(·) from the

data, aiming to find an ε̂ that locally improves the empirical fit of the initial estimator

p̂Init
tj (·). We choose ε̂ in a data adaptive fashion because when the initial estimate of the

conditional probability is identical to the true conditional probability, we hope to set ε̂ =

0. It is only when the initial estimate p̂Init
tj (·) drifts away from ptj(·), ε̂ accounts for their
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difference and updates p̂Init
tj (·) accordingly. Furthermore, because our goal is to estimate αt,j,

the clever covariate Stj(Xi) specifies the updating direction of the initial estimator that yields

a maximal change (or maximal information gain) in the target parameter. Benefiting from

such an update, the final estimator α̂one-step
t,j attains the semiparametric efficiency bound under

the regularity conditions in Section 4.1. In addition, because the one-step TMLE applies an

“expit” transformation on the sum of logit
(
p̂Init
tj (Xi)

)
and the inverse propensity score, the

estimated conditional risk α̂one-step
t,j never falls out of the range between 0 and 1 regardless of

how small êtj(·) is (Section 6.2).

Nevertheless, naively carrying out the above procedure one subgroup at a time can be

computationally inefficient in the presence of many subgroups. In a simple comparison

provided in Table 1, our proposed estimator directly targeting the multi-subgroup parameter

αt as a whole improves the computational speed by about 35% compared to this one-group-

at-a-time approach, when the initial estimator p̂Init
tj (·) and the estimated propensity scores

êtj(·) are obtained via GLMs.

[Table 1 about here.]

3.2 One-step TMLE targeting multiple subgroups

3.2.1 Procedure overview

To avoid the discussed potential problems of the conventional one-step TMLE, we amend the

one-step TMLE estimator so that it directly targets αt. A natural idea is to replace the uni-

variate clever covariate with a multi-dimensional vector of clever covariates
(
Ŝt1(Xi), . . . , Ŝtd(Xi)

)ᵀ

in the logistic regression

Yi ∼ logit
(
p̂Init
t (Xi)

)
+

d∑

j=1

εt,j · Ŝtj(Xi), i ∈ {i : Ti = t}, (2)
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where Ŝtj(Xi) =
1(Xi∈Aj)

P̂ (Aj)

1(Ti=t)
êt(Xi)

. Note that here we generate the initial estimates p̂Init
t (Xi)

and êt(Xi) with the entire available sample. We then construct the estimator for αt with

α̂one-step
t =

( 1

nt1

n∑

i=1

p̂t1(Xi), . . . ,
1

ntd

n∑

i=1

p̂td(Xi)
)ᵀ
, (3)

where p̂tj(Xi) = expit
(

logit
(
p̂Init
t (Xi)

)
+ ε̂t,j · Ŝt,j(Xi)

)
.

In the presence of multiple subgroups with large d, we may observe small P̂ (Aj) or êt(Xi)

within a random sample. In this situation, given that P̂ (Aj) and êt(Xi) enter the regression

problem in Eq (2) as denominators, the above procedure can potentially produce numerically

unstable estimates, which may inflate the variance of α̂one-step
t . We hope to further robustify

the above procedure by considering a simple variation, where we shall also demonstrate that

the algorithm proposed below is a reparametrized dual problem of the above (primal) problem

defined in Eq (2) (see Web Appendix B for details). Our proposed procedure operates as

follows, for each iteration k,

Yi ∼ logit
(
p̂

(k−1)
t (Xi)

)
+ γS̃

(k−1)
t (Xi), (4)

p̂
(k)
t (Xi) = expit

(
logit

(
p̂

(k−1)
t (Xi)

)
+ γ̂(k) · S̃(k−1)

t (Xi)
)
, i ∈ {i : Ti = t}, k = 1, . . . , K,

where γ̂(k) is the estimated regression coefficient obtained in the logistic regression (4).

p̂
(1)
t (Xi) denotes the initial estimate. p̂

(k−1)
t (Xi) denotes the estimate from the previous

iteration, and S̃
(k−1)
t (Xi) is the customized “clever covariate” that directly targets αt:

S̃
(k−1)
t (Xi) =

∑d
j=1

1(Xi∈Aj)

P̂ (Aj)

1(Ti=t)
êt(Xi)

·
(∑n

l=1 φ̂
(k−1)
j (Yl, Tl, Xl)

)

√
∑d

j=1

(∑n
l=1 φ̂

(k−1)
j (Yl, Tl, Xl)

)2
, (5)

where φ̂
(k−1)
j (Yi, Ti, Xi) =

1(Xi∈Aj)

P̂ (Aj)

1(Ti=t)
êt(Xi)

(Yi − p̂(k−1)
t (Xi)). The intuition of S̃

(k−1)
t (Xi) shall

be explained in the next section. When the maximum number of iterations K is reached or

when γ̂ is sufficiently close to 0, we take the final estimate p̂t(Xi) = p̂
(K)
t (Xi) and estimate

αt again with:

α̂t =
(∑i∈A1

p̂t(Xi)

nt1
, . . . ,

∑
i∈Ad

p̂t(Xi)

ntd

)ᵀ
, (6)
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where ntj =
∑n

i=1 1(Ti = t)1(Xi ∈ Aj) denotes the subgroup j’s sample size in the arm t.

We refer to the estimator in Eq (6), which is obtained from Eq (4), as the iterative version

of the one-step TMLE (iTMLE) targeting multiple subgroups of interest.

3.2.2 Intuitive explanation of our proposal

Note that although the proposed estimators in Eq (3) and Eq (6) are asymptotically equiv-

alent as n → ∞, we provide some heuristic explanations of the benefits of adopting our

procedure defined in Eq (4) compared to the procedure defined in Eq (2) in finite samples.

First, given that the performance of the one-step TMLE defined by Eq (2) depends on

the initial estimator p̂Init
t (Xi), our revised procedure in Eq (4) works with an improved

initial estimator in each iteration. Concretely, in Eq (4), the initial estimator entering each

iteration is constantly being updated, leading to increased estimation efficiency and reduced

estimation bias compared to the procedure defined in Eq (2). Such improvements can be

rather prominent in finite samples (See Web Appendix H.1 for simulation comparisons).

Second, the form of the clever covariate S̃t(Xi) in Eq (4) may have the added benefit of

being robust to the presence of small estimated propensity scores, because the estimated

propensity scores only enter the estimation process after being self-normalized in S̃t(Xi).

Small propensity scores are often encountered in datasets with unbalanced covariate distri-

bution across the treatment and control groups. Such an imbalance can lead to conventional

estimators having substantial biases and large variances (Petersen et al., 2012). Many numer-

ical studies have found that similar self-normalization of propensity scores provides much

more stable estimates of the treatment effects in finite samples (Hájek, 1971). While the

original formulation of the primal problem in Eq (2) involves a sum over d inverse propensity

score weighted clever covariates, its performance can be sensitive to the presence of small

propensity scores in finite samples. Even though the estimator obtained by Eq (4) and the

estimator obtained by Eq (2) are asymptotically equivalent, the estimator obtained by Eq
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(4) may have finite sample improvements when the estimated propensity scores are small

(see Web Appendix B for discussion).

Third, the estimator obtained from Eq (4) not only remains semi-parametric efficient and

“doubly robust,” but also solves the direct sample analogue of the efficient influence function.

To see why it is semiparametric efficient, we set the derivative of the objective function of

the logistic regression in (2) with respect to ε to zero, which reduces to (see Web Appendix

F for detailed derivations)

d∑

j=1

(
1

n

n∑

i=1

1(Xi ∈ Aj)
P̂ (Aj)

Ti
êt(Xi)

(Yi − p̂t(Xi))

)2

= 0. (7)

This indicates that our estimator α̂t = (α̂t,1, . . . , α̂t,d)
ᵀ solves the direct sample analogue

of the efficient influence function: 1
n

∑n
i=1

1(Xi∈Aj)

P̂ (Aj)

{
Ti

êt(Xi)
(Yi − p̂t(Xi)) + p̂t(Xi)

}
− α̂t,j =

0, j = 1, . . . , d. Therefore, it attains the semiparametric efficiency bound (Bickel et al.,

1993) under appropriate conditions imposed on the nuisance parameter estimators (Theorem

1). Regarding the “doubly robustness,” for any model-based estimators êt(·) and p̂t(·),

our estimator combines regression imputation and inverse propensity score weighting, and

remains consistent if either the model et(·) or pt(·) is misspecified (see Section 6.2 for

simulation results). We provide further heuristic explanations of the targeted maximum

likelihood estimator from a semiparametric inference point of view in Web Appendix C.

3.3 Extension to relative risk, odds ratio, and absolute risk difference estimations

Given that α1 and α0 are the building blocks of the multi-subgroup relative risk and odds

ratio, estimation for these two parameters of interest largely follows our proposal in Section

3.2. The iterative version of the one-step TMLE needs a slight modification in that at each

iteration k, we adopt the following logistic regression problem: Yi ∼ logit
(
p̂(k−1)(Ti, Xi)

)
+

γ1S̃
(k−1)
1 (Xi) + γ0S̃

(k−1)
0 (Xi), k = 1, . . . , K, and perform the updating as p̂(k)(Ti, Xi) =

expit
(

logit
(
p̂(k−1)(Ti, Xi)

)
+ γ̂

(k)
1 · S̃(k−1)

1 (Xi) + γ̂
(k)
0 · S̃(k−1)

0 (Xi

)
. Then we estimate αRR,
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αOR, and αARD with α̂RR =
(
α̂1,1

α̂0,1
, . . . ,

α̂1,d

α̂0,d

)
, α̂OR =

(
α̂1,1

1−α̂1,1

/
α̂0,1

1−α̂0,1
, . . . ,

α̂1,d

1−α̂1,d

/
α̂0,d

1−α̂0,d

)
,

and α̂ARD =
(
α̂1,1 − α̂0,1, . . . , α̂1,d − α̂0,d

)

As for constructing simultaneous confidence intervals, we apply the Delta method on

(α1,α0) to estimate the sample covariance matrices of the relative risk and the odds ratio

estimators following a recipe similar to Section 5. To avoid redundancy, we leave the detailed

descriptions to Web Appendix E.2.

4 Theoretical Investigations

4.1 Regularity conditions

In this section, we introduce additional notation and assumptions adopted in the theo-

retical results. Recall that {Oi}ni=1 := {(Yi, Ti, Xi)}ni=1 are i.i.d. random variables defined

on the space O with respect to a probability measure P . If F is a collection of real-

valued functions defined on O, we assume that Pf =
∫
fdP exists for each f ∈ F .

Note that such a notation can be more helpful as it allows us to conveniently work with

random functions. We use EX [f(X)] to denote the expectation taken with respect to the

random variable X when it is more convenient to simplify notation. Given the probabil-

ity measure P , our target parameter αt can also be written as a statistical function of

P , denoted as αt(P ). Let H be a convex set of functions such that the true nuisance

parameter η0 , (e(x), p1(x), p0(x), P (A1), . . . , P (Ad)) ∈ H. Let Hn ⊂ H denote the nui-

sance estimator realization set, i.e., the estimator of the nuisance parameters satisfy η̂ =

(êt(x), p̂1(x), p̂0(x), P̂ (A1), . . . , P̂ (Ad)) ∈ Hn.

Let c, q, and C be fixed strictly positive constants, where q > 2. Let (ξn)∞n=1 and (∆n)∞n=1

be sequences of positive constants approaching 0. Denote the lq-norm with respect to a

probability measure P as || · ||P,q, e.g. ||f(X)||P,q := (
∫
|f(x)|qdP (x))1/q. For o ∈ O, we define

ϕt(o;αt,η0) ,
(
ϕt,1, . . . , ϕt,d

)ᵀ
as the vector of the efficient influence function for estimating
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αt, ϕRR(o;αRR,η0) ,
(
ϕRR,1, . . . , ϕRR,d

)ᵀ
as the vector of the efficient influence function for

estimating αRR, ϕOR(o;αOR,η0) ,
(
ϕOR,1, . . . , ϕOR,d

)ᵀ
as the vector of the efficient influence

function for estimating αOR, and ϕARD(o;αARD,η0) ,
(
ϕARD,1, . . . , ϕARD,d

)ᵀ
as the vector

of the efficient influence function for estimating αARD, where for j = 1, . . . , d,

ϕt,j , ϕt,j(o;αt,η0) =
1(x ∈ Aj)
P (Aj)

[(
y − pt(x)

)1(T = t)

et(x)
+ pt(x)− αt,j

]
, (8)

ϕRR,j , ϕRR,j(o;αRR,η0) =
1(x ∈ Aj)
P (Aj)

[ 1

α0,j

((
y − p1(x)

) t

e1(x)
+ p1(x)− α1,j

)
(9)

+
α1,j

α2
0,j

( 1− t
e0(x)

(
y − p0(x)

)
+ p0(x)− α0,j

)]
,

ϕOR,j , ϕOR,j(o;αOR,η0) =
1(x ∈ Aj)
P (Aj)

[ 1− α0,j

α0,j(1− α1,j)2

((
y − p1(x)

) t

e1(x)
+ p1(x)− α1,j

)

(10)

− α1,j

α2
0,j(1− α1,j)

( 1− t
e0(x)

(
y − p0(x)

)
+ p0(x)− α0,j

)]
.

ϕARD,j , ϕARD,j(o;αARD,η0) =
1(x ∈ Aj)
P (Aj)

[((
y − p1(x)

) t

e1(x)
+ p1(x)− α1,j

)
(11)

−
( 1− t
e0(x)

(
y − p0(x)

)
+ p0(x)− α0,j

)]
.

Assumption 4: The function class {ϕ(o;αt,η),η ∈ H} is a Donsker class.

Assumption 5: The nuisance parameter estimator η̂ satisfies that supη∈Hn
||η − η0||2 =

oP (1) and ||ê(X)− e(X)||P,2 × ||p̂t(X)− pt(X)||P,2 6 ξnn
−1/2 holds with probability 1 when

n tends to infinity.

Assumption 4 assumes the Donsker class condition for the class of efficient influence

functions. This Donsker class condition can be weakened by conducting cross-fitting (see

Web Appendix G.1 for implementation details) and at the expense of more complicated

proofs (see Zheng and van der Laan (2010), for example). Additionally, Benkeser and van der

Laan (2016) propose the highly adaptive lasso (HAL) estimator which guarantees
√
n-rate

of convergence in the initial estimation step. Assumption 5 imposes regularity conditions on
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the nuisance parameter estimator. The second part in Assumption 5 bounds the product of

errors of the nuisance parameter estimators p̂t(X) and ê(X).

4.2 Properties of the proposed estimator

In this section, we introduce the main theoretical results and some necessary notation. Recall

that {Oi}ni=1 := {(Yi, Ti, Xi)}ni=1 is an i.i.d. random sample defined on the space O with

respect to a probability measure P . Denote o = (y, t, x) as a realized data point, o ∈ O.

Theorem 1: Under Assumptions 1-5, we define the vector of the efficient influence

function ϕt = (ϕt,1, . . . , ϕt,d)
ᵀ, where ϕt,j is the efficient influence function (as given in

Eq (8)) measured at a realized data point o = (y, t, x) for the subgroup j. The error of

the proposed conditional risk estimator α̂t = (αt,1, . . . , αt,d)
ᵀ ∈ Rd, after scaling by

√
n,

converges to a multivariate Gaussian random variable with mean 0 and covariance matrix

P [ϕtϕ
ᵀ
t ] when n → ∞, that is

√
n
(
α̂t − αt

)
 N

(
0, P [ϕtϕ

ᵀ
t ]
)

. (See the precise definition

of ϕt,j in Section 4.1).

Theorem 1 says that our conditional risk estimator converges in distribution to a multivari-

ate Gaussian distribution. For any subgroups under consideration, the variance of our condi-

tional risk estimator attains the semiparametric efficiency bound. Theorem 1 also justifies the

validity of the simultaneous confidence interval provided in Eq to be presented (13) in Section

5. Derivations of the efficient influence functions for relative risk, odds ratio and absolute risk

difference estimators are provided in Web Appendix A.3. We summarize the large sample

properties of αRR, αOR, and αARD in the following Proposition 1, which demonstrates that

the variance of the proposed causal effect estimators attains the semiparametric efficiency

bound. The proof of the proposition below can be found in Web Appendix A.

Proposition 1: Under Assumptions 1 - 5, define the vector of the efficient influence

function ϕRR = (ϕRR,1, . . . , ϕRR,d)
ᵀ, the vector of the efficient influence function ϕOR =
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(ϕOR,1, . . . , ϕOR,d)
ᵀ, and the vector of the efficient influence functionϕARD = (ϕARD,1, . . . , ϕARD,d)

ᵀ,

where ϕRR,j, ϕOR,j, and ϕARD,j are the efficient influence functions (as given in Eq (9)-

(11)) measured at a realized data point o = (y, t, x). The proposed causal effect estimators

satisfy that as n → ∞,
√
n
(
α̂RR − αRR

)
 N

(
0, P [ϕRRϕ

ᵀ
RR]
)

,
√
n
(
α̂OR − αOR

)
 

N
(

0, P [ϕORϕ
ᵀ
OR]
)

and
√
n
(
α̂ARD−αARD

)
 N

(
0, P [ϕARDϕ

ᵀ
ARD]

)
(See the precise defini-

tions of ϕRR,j, ϕOR,j, and ϕARD,j in Section 4.1).

5 Simultaneous Confidence Intervals

To construct a level-q confidence interval for a single subgroup j, we work with α̂t,j±Φ−1(1−

q/2) ·
(

Σ̂t,jj

n

)1/2

, where Σ̂t is the estimated covariance matrix with

Σ̂t =
(
Σ̂t,jk

)d
j,k=1

=
1

n

n∑

i=1

ϕ̂t,iϕ̂
ᵀ
t,i, ϕ̂t,i =

(
ϕ̂t,1(Yi, Ti, Xi), . . . , ϕ̂t,d(Yi, Ti, Xi)

)ᵀ
,

ϕ̂t,j(Oi) =
1

n

n∑

i=1

1(Xi ∈ Aj)
P̂ (Aj)

[( Ti
êt(Xi)

(
Yi − p̂t(Xi)

)
+ p̂t(Xi)− αt,j

)
. (12)

To construct a simultaneous level-q confidence interval though, let κ̂(q, Σ̃t) be a consistent

estimate of the (1 − q)-th quantile of maxj∈1,...,d |Zj|, where (Z1, . . . , Zd)
ᵀ ∼ N

(
0, Σ̃t

)
with

Σ̃t =
(
Σ̃t,jk

)d
j,k=1

and Σ̃t,jk =
Σ̂t,jk√

Σ̂t,jjΣ̂t,kk

. Then, the constructed simultaneous confidence

interval satisfies

lim
n→∞

P

(
α̂t,j ± κ̂(q, Σ̃t) ·

(Σ̂t,jj

n

)1/2

, j = 1, . . . , d

)
= 1− q. (13)

Such a simultaneous confidence interval ensures that all the confidence intervals cover the

corresponding true subgroup parameter at the same time.

6 Simulation Studies

To demonstrate the merit of the proposed method (iTMLE), we compare it with some

conventional estimators under overlapping and non-overlapping subgroups cases. We com-

pare the proposed method with a doubly robust (DR) estimator and a generalized linear

model estimator (GLM), and we compare the cross-fitted version of iTMLE with the double
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machine learning (DML) method, since DML also utilizes cross-fitting. Before we present

our simulation results, we summarize two main takeaways from the simulation studies for

our readers: (1) The proposed method has smaller bias, smaller variance, and lower family-

wise error rate (FWER) compared to the considered estimators in finite samples. Recall

that FWER refers to the probability of at least one constructed simultaneous confidence

interval excluding the truth; (2) With cross-fitting, the proposed method shows enhanced

finite sample performance in terms of smaller bias than the implementation without cross-

fitting.

We measure the performance of various estimators according to their
√
n-scaled biases

(computed as the root-n sum of mean differences between the Monte Carlo estimates and

the true parameter across multiple subgroups), standard deviations (computed as the root-

n sum of standard deviations of the Monte Carlo estimates across multiple subgroup),

and FWER (computed as the proportion of Monte Carlo samples in which at least one

constructed confidence interval for multiple subgroups excluding the truth). We scale the

bias and variance by the sample size as they converge to zero as n goes to infinity.

6.1 Simulation design

Our simulation design mimics observational studies where treatments are assigned based

on covariates. We simulate 1000 random Monte Carlo samples from: X = (X1, . . . , X5)ᵀ ∼

N(0,Σ),Σij = 0.5|i−j|, T ∼ Bernoulli
(

expit(X1 − 0.5 · X2 + 0.25 · X3 + 0.1 · X4)
)

, and

Y |T,X ∼ Bernoulli
(

expit(21 + T + 27.4 · X1 + 13.7 · X2 + 13.7 · X3 + 13.7 · X4)
)

. We

consider this specific simulation design because the design has been frequently adopted

in the causal inference literature (see Imai and Ratkovic, 2014, for example). This en-

ables us to better compare our approach with existing methods. Kindly pointed out by an

anonymous reviewer, the above simulation design produces rather deterministic outcomes,

and we thus provide additional simulation results under an alternative simulation design
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in Web Appendix H.3. We consider two types of subgroups: overlapping subgroups and

non-overlapping subgroups. Overlapping subgroups with moderate d, d = 4, are generated

by A1 = {X1 > Φ−1(0.1)},A2 = {Φ−1(0.1) < X2 < Φ−1(0.9)},A3 = {X3 + X4 >

−2},A4 = {1X4>0.5 > −1}. Non-overlapping subgroups with large d, d = 10, are generated

by Aj =
{
QX1(j/10) < X1 < QX1((j+1)/10)

}
, j = 1, . . . , 10. For simplicity, in the following

simulation studies, the considered parameter is α1 = (α1,1, . . . , α1,d)
ᵀ.

6.2 Comparison with conventional estimators

We generate initial estimates of et(·) and pt(·) through logistic regression, random forest,

or gradient boosting, implemented in R packages stats, ranger (Wright et al., 2020), and

xgboost (Chen et al., 2019). We compare the iTMLE with the DR estimator, a simple re-

gression adjustment estimator, and the inverse propensity score estimator, which are defined

as α̂DR
t,j = 1

nj

∑
i∈Aj

[
Ti

êt(Xi)
(Yi − p̂Init

t (Xi)) + p̂Init
t (Xi)

]
, α̂GLM

t,j = 1
nj

∑
i∈Aj

p̂Init
t (Xi), α̂

IPW
t,j =

1
nj

∑
i∈Aj

Ti
êt(Xi)

Yi. Simultaneous confidence intervals for these estimators are constructed

using standard large sample theory adopted in the literature (see Hahn (1998) for the

DR estimator and van der Wal and Geskus (2011) for the IPW estimator). We provide

finite-sample comparisons in Figure 1(A)–(C) for overlapping subgroups and Figure 1(D)–

(E) for non-overlapping subgroups. As the IPW estimator has much larger variance than

the other estimators, we exclude its results from these figures. From Figure 1 we observe

that the iTMLE estimator outperforms the others for bias, standard deviation, and FWER,

regardless of how e1(·) and p1(·) are estimated initially. This is in-line with our theoretical

results because the proposed estimator consists of a data-adaptive bias correction term which

largely improves its finite sample performance. In addition, among all three initial estimators,

random forest seems to be a winner.

[Figure 1 about here.]
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6.3 Comparison with the double machine learning

In this part of the simulation study, we compare the performance of the cross-validated

version of iterated one-step TMLE for multiple parameters with the double machine learning

(DML) method (Chernozhukov et al., 2017). DML also involves the estimations of the

propensity score model and the conditional mean model, and it is a meta-learning method

that relies on Neyman orthogonal score and cross-fitting to generate debiased estimates for

the causal estimands. The simulation results of the three-fold cross-validated iTMLE and

DML (implemented with the R package DoubleML (Bach et al., 2021)) are presented in Figure

2. There are two takeaways from the summarized results in Figure 2. First, the performance

of CV-iTMLE surpasses DML. Although DML is rather robust compared to the doubly

robust estimator, it still yields larger bias and variance than CV-iTMLE. Second, compared

to the iTMLE implementation without cross-fitting (Figure 1), CV-iTMLE shows a faster

convergence rate. We conjecture that the sample splitting step allows the non-parametric

estimators in the initial stage to converge faster and thus shows more robust performance

(smaller bias, smaller standard deviation, and smaller FWER).

[Figure 2 about here.]

7 Case Study in UK Biobank Data

Statins are the most commonly prescribed cholesterol-lowering medications in the United

States. Cholesterol’s role in β-amyloid processing and the potential link between serum

cholesterol levels and AD pathology (Reed et al., 2014) have led to the argument that

cholesterol-moderating drugs such as statins could reduce the risk of AD onset. However,

this argument is controversial by current evidence. Several cohort studies found a negative

association between statin usage and AD (Zissimopoulos et al., 2017), while others have failed

to replicate those findings. These inconsistent findings might be due to the effect of statins
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on AD varying across sex, age, and other subgroups (Zissimopoulos et al., 2017). Thus, we

hypothesize that statin usage has significant benefits of reducing AD risk in some (but not

all) subgroups. To test this hypothesis, we analyzed data in the UK Biobank to investigate

the heterogeneous treatment effect of inheriting rs12916-T allele, a proxy for statin usage, on

AD risk in the White British subpopulations. We considered a cross-sectional study design

by looking at the disease prevalence at the end of year 2021.

7.1 Study design

The UK Biobank study recruited 502,536 participants aged from 40 to 69 in the United

Kingdom from 2006 to 2010. We defined AD status by integrating information provided

by Hospital Episode Statistics, death registries, and self-reported diagnoses (see details in

Web Appendix I.1). We restricted our study to 293,929 White British individuals. These

individuals are unrelated and had passed standard quality control steps.

Instead of directly adopting statin usage as a treatment variable, we adopted a genetic

variant rs12916-T as a surrogate treatment variable. This means that if the subject carries

the variant rs12916-T, the treatment indicator variable is set to be T = 1; otherwise, T is set

to be zero. We adopted this genetic surrogate biomarker as the treatment variable for two

reasons. On the one hand, the rs12916-T allele only affects the LDL cholesterol concentration

through HMGCR inhibition, and it is thus functionally equivalent to statin usage (Swerdlow

et al., 2015; Guo et al., 2022). More specifically, the decreased LDL cholesterol level associated

with statin usage is similar to the association pattern with rs12916-T (R2 = 0.94) (Würtz

et al., 2016), thus rs12916-T is a sensible surrogate treatment variable for statin usage.

On the other hand, given that genetic variants are randomly inherited from parents, our

treatment variable (whether or not the individual carries rs12916-T) is thus independent of

unmeasured confounding factors such as lifestyle modifications after statin usage, potentially

making Assumption 1 more plausible.
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To account for genetic pleiotropy, we adjusted for 385 SNPs that are associated with LDL

(Web Appendix I.1). We further adjusted for age and sex variables, which may improve

estimation efficiency given their associations with the outcome. We investigated the effect of

inheriting rs12916-T allele on AD risk in (1) males, (2) females, (3) age < 65, (4)age > 65,

(5) individuals with high AD genetic risk, and (6) individuals with low AD genetic risk.

Notably, “high AD genetic risk” was defined as either a subject’s parents or siblings being

diagnosed with AD, while “Low AD genetic risk” was defined as neither a subject’s parents

nor siblings being diagnosed with AD. We compared the performance of CV-iTMLE with

the DML and the GLM methods. We used the random forest as our first stage estimator as it

provides the most robust results in our simulation studies. Because statin usage may increase

the risk of T2D (Swerdlow et al., 2015), as a secondary analysis, we investigated the effect of

inheriting rs12916-T allele on T2D to evaluate the potential heterogeneous side effects. The

study design and results of this secondary analysis can be found in Web Appendix I.2.

7.2 Results

Figure 3 summarizes the effect of inheriting rs12916-T (a proxy for statin usage) on AD

risk in considered subgroups. As the GLM was applied to each subgroup separately and the

sample size was much smaller, leading to non-significant associations for all the subgroups.

The DML method also did not find any significant effects in all subgroups. This might be

caused by small estimated propensity scores, leading to large variability in finite samples.

In contrast, by targeting all subgroups simultaneously, the proposed method suggested that

carrying rs12916-T allele is protective against AD in the subgroup younger than 65 (RR:

0.92, 95% CI: 0.86–0.98). In sum, our proposed method showed shortened confidence intervals

with improved statistical power in detecting significant subgroups, while the GLM and DML

methods tend to lose power.

[Figure 3 about here.]
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We acknowledge that the study design has potential limitations. First, our study only

investigated the treatment effect of carrying rs12916-T allele or not. Although this genetic

variant is a sensible proxy for statin usage, the findings from this study need to be interpreted

cautiously. Second, our study was based on UK Biobank participants who were healthier than

the general population. Thus, our findings may not be generalizable to other populations.

8 Discussion

In this paper, we propose a semiparametric efficient method for simultaneous heterogeneous

treatment effect estimation across multiple subgroups. The proposed method allows us to

construct a powerful multiple testing procedure leveraging the subgroup dependence struc-

ture. In our empirical studies, the proposed method demonstrates finite sample improvements

compared to other conventional methods. This paper opens various possibilities for future

research. Our current method can be extended to work with other types of outcomes. For

continuous outcomes, one can either modify the updating step (Gruber and van der Laan,

2010), or dichotomize a continuous outcome into binary values (Web Appendix E.1). In

addition, our current method defines subgroups using observed confounders not only because

we are interested in understanding the treatment effect heterogeneity based on patient

observed confounders, but also because under the unconfoundedness assumption, defining

subgroups based on observed confounders enables us to more directly identify subgroup

treatment effects. Defining subgroups based on other types of variables (including mediators,

instrumental variables, and exogenous variables) are also plausible but the identification

condition may subject to change. We have provided more discussions in Web Appendix E.3.
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pages 297–331.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in

observational studies for causal effects. Biometrika 70, 41–55.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandom-

ized studies. Journal of educational Psychology 66, 688.

Swerdlow, D. I., Preiss, D., Kuchenbaecker, K. B., Holmes, M. V., Engmann, J. E., Shah, T.,

et al. (2015). Hmg-coenzyme a reductase inhibition, type 2 diabetes, and bodyweight:

evidence from genetic analysis and randomised trials. The Lancet 385, 351–361.

van der Laan, M. and Gruber, S. (2016). One-step targeted minimum loss-based estimation

based on universal least favorable one-dimensional submodels. The international journal

of biostatistics 12, 351–378.

van der Laan, M. J. and Robins, J. M. (2003). Unified methods for censored longitudinal

data and causality. Springer Science & Business Media.

van der Laan, M. J. and Rose, S. (2011). Targeted learning: causal inference for observational

and experimental data. Springer Science & Business Media.

van der Laan, M. J. and Rose, S. (2018). Targeted learning in data science. Springer.

 15410420, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13800, W
iley O

nline L
ibrary on [04/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Efficient Targeted Learning of Heterogeneous Treatment Effects for Multiple Subgroups 25

van der Laan, M. J. and Rubin, D. (2006). Targeted maximum likelihood learning. The

International Journal of Biostatistics 2,.

Van der Vaart, A. W. (2000). Asymptotic statistics, volume 3. Cambridge university press.

van der Wal, W. M. and Geskus, R. B. (2011). ipw: an r package for inverse probability

weighting. Journal of Statistical Software 43, 1–23.

VanderWeele, T. J., Luedtke, A. R., van der Laan, M. J., and Kessler, R. C. (2019). Selecting

optimal subgroups for treatment using many covariates. Epidemiology 30, 334.

Wright, M. N., Wager, S., and Probst, P. (2020). Ranger: A fast implementation of random

forests. R package version 0.12 1,.
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Figure 1. Comparison of bias, standard deviation (scaled by root-n), and (1-FWER)
in overlapping and non-overlapping subgroups. “iTMLE” denotes the proposed estimator.
“DR” denotes the doubly robust estimator. “GLM” denotes the generalized linear models.
The maximum Monte Carlo standard error of (1-FWER) is 0.026 for iTMLE, 0.028 for DR,
and 0.022 for GLM. “The maximum Monte Carlo standard error of (1-FWER)” refers to the
largest standard error of (1-FWER) (out of all three considered estimators for the propensity
score and the conditional expectation of the outcome based on logistic regression, random
forest, and gradient boosting) computed from Monte Carlo samples. This figure appears in
color in the electronic version of this article, and any mention of color refers to that version.
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Figure 2. Comparison of the cross-validated iTMLE implementation and the double
machine learning method. “iTMLE-CV” denotes the proposed method with cross-fitting.
“DML” denotes the double machine learning method. The maximum Monte Carlo standard
error of (1-FWER) is 0.024 for CV-iTMLE and 0.026 for DML. “The maximum Monte Carlo
standard error of (1-FWER)” refers to the largest standard error of (1-FWER) (out of all
three considered estimators for the propensity score and the conditional expectation of the
outcome based on logistic regression, random forest, and gradient boosting) computed from
Monte Carlo samples. This figure appears in color in the electronic version of this article,
and any mention of color refers to that version.
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Figure 3. The effect of inheriting rs12916-T allele (a proxy for statin usage) on the
risk of developing Alzheimer’s disease (AD) in the UK Biobank white British population
(n = 293, 929). “DML” denotes the double machine learning method. “GLM” denotes
the generalized linear models. GLM is used for association test and does not imply causal
relationships. “CV-iTMLE” denotes the cross-validated iTMLE method. This figure appears
in color in the electronic version of this article, and any mention of color refers to that version.
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Table 1
Computational time (in seconds) of the conventional TMLE and the proposed method with sample size n = 228, 466

on a Lenovo NeXtScale nx360m5 node (24 cores per node) equipped with Intel Xeon Haswell processor. The core
frequency is 2.3 Ghz and supports 16 floating-point operations per clock period.

Classical one-step TMLE iTMLE

1441.36 924.51
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