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Motivations

Practical motivation: testing gene-environment interactions

B Complex diseases are often caused by the interplay of genes
and the environment

Theoretical motivations:

B Testing high-dim groups of parameters with high-dim nuisance
parameters is largely untouched

B Existing methods hard to control Type | error rates and
maintain high power
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Problem formulation

B Y] is the phenotype (outcome) (i =1,...,n)

B Z,...,Z, are the g covariates (age, gender, environmental
effect, genetic effect, etc.) (high-dimensional)
B X1, X5,..., X, are the p gene-environment interactions

(high-dimensional)
W ui=E(YilZi, .. Zg X, Xp)

Model
pi=g Yoo+ arZin + -+ agZig + BiXin + -+ BpXip)

B Hypothesis of no gene-environment interaction effect

Ho:p1=--=p8p=0 vis. Hyp:Atleast one 5; #0
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New statistical challenge

B Estimating o under the Hp is difficult
B Use a penalized regression framework:
min —L(a) + AP(«)
B Ridge: P(a) =7 a%; Lasso: P(a) =7 |ay]

B Lasso yields sparse but biased estimation
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Method

Test statistic

Pros

Cons

GESAT (Lin et al., Bio-
statistics, 2013)

SSU + Ridge penalty

Fast; easy to use

Fail to control Type | er-
ror rates when q is large

Three step procedure
(Zhang  and
JASA, 2017

Cheng,

)
V/n|BP*
sd(B0L)

under

Tst = max;

Powerful sparse

alternative

Only for linear mod-
els; Lose power under

“dense” alternatives

Note: BDL is the de-sparsified (or de-biased) Lasso: Lasso plus a

one step bias correction
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Oracle estimator

B Oracle estimator: MLE if we know which a; =0
B If we know the oracle estimator, it will reduce to the

low-dimensional nuisance parameter situations

Question

How to get the oracle estimator?
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Our idea: using TLP to estimate nuisance parameter

B Truncated Lasso penalty (TLP):
J(ej) = min([ay], 7)
(Shen et al. JASA, 2012)

B TLP consistently reconstructs the
oracle estimator under some mild

001 ! ‘ ‘ ‘ conditions
-2 -1 0 1 2
9%

J(ey) with T = 1 B TLP is a non-convex penalty. |
j =
develop an R package “glmtlp”

Online manual:

wuchong.org/glmtlp.html


wuchong.org/glmtlp.html
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New test: iSPU and aiSPU

B Apply the adaptive testing idea to maintain high power across
different cases

W Score U =157 (Vi—poi)X;, 1<j<p
fioi = g 1&g P + Z1ia{ " + - + Z146]1P)

B iSPU(y): iSPU(~) = j'):l Uj7

B iSPU(c0): iSPU(c0) = maxi<j<p nU? /o

B aiSPU: TaiSPU == minver 'DiSPU(v)
e =1{1,2,...,6,00}
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Asymptotic distribution under the null

Theorem
Under some mild assumptions and the null hypothesis Hp:

B Let [ be a set of finite positive integers,

[{iSPU(~) — u(fy)}/a(v)];er converges weakly to a normal
distribution N(0, R) as n,p — oo

B When v = o0, let ap = 2log p — log log p, for any x € R,
Pr{iSPU(c0) — ap < x} — exp{—n"?exp(—x/2)} as
n,p— oo

B [{iSPU(y) — u('y)}/a(v)];er is asymptotically independent
with iSPU(c0)
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Simulation results: validation of theorem

Empirical Type | errors and powers (%) for a linear model with
n =200, p = 1000, ¢ = 1000, and n = 0.99
Asymptotics (parametric bootstrap)

c 0 03 05 0.7
iSPU(1) 5.6 (5.4) 6.7(6.1) 6.6 (6.3) 5(7.2)
iSPU(2) 3.6 (33) 42(57) 6.6(82) 153 (18.9)
iSPU(3) 5.0 (4.8) 6.4 (5.6) 14.6 (13.5) 41.7 (40.1)
iSPU(4) 3.8 (1.8) 9.1 (7.5) 29.5(26.4) 54.6 (52.1)
iSPU(6) 4.9 (22) 18.2 (13.3) 38.8(33.8) 61.9 (58.2)
iSPU(c0) 3.5 (4.6) 16.1 (18.3) 36.5 (38.7) 61.4 (61.9)
aiSPU 5.3 (4.1) 16.6 (16.5) 38.5(38.3) 61.4 (60.1)




Problem formulation
0000

Power comparison

0.60-

0.40-

Power

0.20-

0.05-

Method
000000

Results
000000000

under a linear model

Sparse alternative (7 = 0.99)

Methods oot
-=- aiSPU(Oracle) Pt

-A- ST ~ ;‘.'

— aiSPU(TLP) el

0.50
Effect size ¢
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Power comparison under a linear model

Dense alternative (7 = 0.23)

1.00

Methods

- aiSPU(Oracle) /-~ -
0807  -A-ST +-

—— aiSPU(TLP)

0.05

0.00

Effect sizec
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Type | error rates under a logistic model

Empirical Type | error rates of various tests under G x E
interaction simulations with n = 2000 and various ¢
* Inflated Type | error rates

q 25 50 100 300 500
GESAT 0.061 0.055 0.103* 0.636* 1.000*
aiSPU(Oracle) 0.067 0.049 0.052 0.057 0.047
aiSPU(TLP) 0.061 0.054 0.053 0.042 0.047

12
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ADNI data analysis: pathway-gender interactions

B Brain development and adult brain structure differ by gender
(Cosgrove et al. 2007)

B 214 healthy controls (Y = 1); 364 MCI subjects (Y = 0)

B Main effects: years of education, age, intracranial volume
measured at baseline, gender, and genetic variants

B Bonferroni correction; 96 KEGG pathways
(0.05/100 = 5 x 10~%)

B 2aiSPU identified one significant pathway Fructose and
mannose metabolism (hsa00051, p-value = 3 x 107%);

GESAT failed to do so (p-value = 0.016)

13
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ADNI data analysis: gene-gender interactions

B Candidate gene study (Gene APOE)

B aiSPU identified APOE and gender interaction effects (p-value
= 0.039)

GESAT failed to identify (p-value = 0.56)

B Women who are positive for the APOE €4 are at greater risk
of developing AD than men with this allele (Altmann et al.
2014)

14
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Robustness of choice of I

Sparse alternative: 2 “causal” Dense alternative: 100 “causal

0.60

&

Effect Effectc

Empirical powers of aSPU with different I set. I set aSPU_1,
aSPU_2, aSPU_3, aSPU_4 represent aSPU with

M ={12,...,4,00}, NI ={1,2,...,6,00},

N3 ={1,2,...,8,00}, and 'y = {1,2,...,10,00}, respectively.
We set n = 200 and p = 2000.



Asymptotics-based method

pPo = 1-— ﬁ:(s,y:odd 'yer)/ N(O, RO)dS

—To<sy<To

pE=1- ﬂ—(n,:even yer)' N(07 RE)dt

~oo<t,<TE
Pmin * = min{p07pEapoo}

Paspu = 1- (1 - pmin)3



Application to ADNI data: validation of theorem

SPU(1)

parametric

Cor =0.998

000 3 0%
asymptotics

%0

aSPU

parametric

asPU

Cor=0.965

e, "o

)
asymptotics

Comparison between the asymptotics- and the parametric
bootstrap-based p-values for KEGG pathways



More details on proof outline

B For finite 7: if all SNPs are independent, we can apply CLT
directly; use Bernstein's block to make the leading term

almost independent

B For asymptotically independent: the distribution of SPU(7)
conditional on SPU(o0) is the same as the unconditional

version



Difference of convex (DC) algorithm

B Estimate o by minimizing min S(a) = —L(a) + AP(«)
B DC decomposition of S(«):

S(a) = Si(a) — Sx(a)
q
Si(a) = —L(a) + A |ay]
Jj=1

q
= Z max(|a;| — 7,0)
j=1

B Approximate the Sy(«a), then we have

S(M () +A2|aj|/(|*’" Y <1)



Details on GESAT

B Q= (Y — pu(@R)XX'(Y — u(aR)
B Follow a mixture of x? distribution under the null

B /n-consistent (Knight and Fu 2000): \/n(&% — a) = 0,(1)
Only valid when the cov(Z) is non-negative (small q)

B Cannot control Type | error rate when q is large



Details on three-step procedure

B Desparsifying the Lasso: Lasso plus a one step bias correction
B Three-step procedure (Zhang and Cheng, 2017)
e Random sampling splitting: D; & D,

e Marginal screening based on D;

Testing after screening based on D,:
Tost = max; /n|BPL|; To = max; /n|BPE|/sd(BPL)
Error term will be out of control for other type statistics

(Sum, SSU)

Only apply to a linear model



Asymptotic power analysis

Pr(Taispu = minyer Pispu(y) < pa) = Pr(Pispuiy) < Pa)
B p}: critical threshold under Hy with significance level «

B The asymptotic power of aiSPU is 1 if there exists v € I such
that Pr(Pispu(y) < ps) — 1



Asymptotic power analysis

B Unknown truth: size of Py = {j : 3; # 0} is k = A

B “Dense” alternatives (n < 1/2)

e All variables are associated and with the same effect size:
iSPU(1) is asymptotically most powerful among iSPU(y)'s

e Half variables are positively associated; the other half are
negatively associated: iSPU(2) is asymptotically most powerful
B “Sparse” alternatives (n > 1/2):

e The asymptotic power of iSPU with finite ~ is strictly less than
1

e iSPU(c0) is more powerful



