An adaptive test for high-dimensional generalized linear models with application to detect gene-environment interactions

Chong Wu Department of Statistics, Florida State University Joint work with Gongjun Xu, Xiaotong Shen, & Wei Pan

> ENAR 2019 March 25

Outline

Problem formulation

Method

Simulation results

Application to ADNI data

Method 000000

Motivations

Practical motivation: testing gene-environment interactions

Complex diseases are often caused by the interplay of genes and the environment

Theoretical motivations:

- Testing high-dim groups of parameters with high-dim nuisance parameters is largely untouched
- Existing methods hard to control Type I error rates and maintain high power

Problem formulation	Method	Results
0000	000000	000000000

Problem formulation

- Y_i is the phenotype (outcome) (i = 1, ..., n)
- Z₁,..., Z_q are the q covariates (age, gender, environmental effect, genetic effect, etc.) (high-dimensional)
- X₁, X₂,..., X_p are the p gene-environment interactions (high-dimensional)

$$\mu_i = E(Y_i | Z_1, \ldots, Z_q, X_1, \ldots, X_p)$$

Model

$$\mu_i = g^{-1}(\alpha_0 + \alpha_1 Z_{i1} + \dots + \alpha_q Z_{iq} + \beta_1 X_{i1} + \dots + \beta_p X_{ip})$$

Hypothesis of no gene-environment interaction effect

$$H_0: \beta_1 = \cdots = \beta_p = 0$$
 v.s. $H_1:$ At least one $\beta_j \neq 0$

New statistical challenge

Estimating
$$\alpha$$
 under the H_0 is difficult

Use a penalized regression framework:

$$\min - L(\alpha) + \lambda P(\alpha)$$

Ridge: $P(\alpha) = \sum_{j=1}^{q} \alpha_j^2$; Lasso: $P(\alpha) = \sum_{j=1}^{q} |\alpha_j|$

Lasso yields sparse but biased estimation

Outline

Problem formulation

Method

Simulation results

Application to ADNI data

Problem formulation	Method	Results
0000	00000	000000000

Existing methods

Method	GESAT (Lin et al., Bio-	Three step procedure
	statistics, 2013)	(Zhang and Cheng,
		JASA, 2017)
Test statistic	SSU + Ridge penalty	$\mathcal{T}_{st} = max_j rac{\sqrt{n} \hat{eta}^{DL} }{sd(\hat{eta}^{DL})}$
Pros	Fast; easy to use	Powerful under sparse
		alternative
Cons	Fail to control Type I er-	Only for linear mod-
	ror rates when <i>q</i> is large	els; Lose power under
		"dense" alternatives

Note: $\hat{\beta}^{DL}$ is the de-sparsified (or de-biased) Lasso: Lasso plus a one step bias correction

Oracle estimator

- Oracle estimator: MLE if we know which $\alpha_i = 0$
- If we know the oracle estimator, it will reduce to the low-dimensional nuisance parameter situations

Question

How to get the oracle estimator?

Problem formulation	Method	Results
0000	000000	000000000

Our idea: using TLP to estimate nuisance parameter

Truncated Lasso penalty (TLP): $J(\alpha_j) = \min(|\alpha_j|, \tau)$ (Shen et al. JASA, 2012)

TLP consistently reconstructs the oracle estimator under some mild conditions

 TLP is a non-convex penalty. I develop an R package "glmtlp"
Online manual: wuchong.org/glmtlp.html

Problem formulation	Method	Results
0000	000000	000000000

New test: iSPU and aiSPU

Apply the adaptive testing idea to maintain high power across different cases

Score
$$U_j = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\mu}_{0i}) X_{ij}, \quad 1 \le j \le p$$

 $\hat{\mu}_{0i} = g^{-1} (\hat{\alpha}_0^{\mathsf{TLP}} + Z_{1i} \hat{\alpha}_1^{\mathsf{TLP}} + \dots + Z_{1q} \hat{\alpha}_q^{\mathsf{TLP}})$

• iSPU(
$$\gamma$$
): iSPU(γ) = $\sum_{j=1}^{p} U_{j}^{\gamma}$

• iSPU(∞): $iSPU(\infty) = \max_{1 \le j \le p} nU_j^2 / \sigma_{jj}$

■ aiSPU:
$$T_{aiSPU} = \min_{\gamma \in \Gamma} P_{iSPU(\gamma)}$$

•
$$\Gamma = \{1, 2, \dots, 6, \infty\}$$

Problem formulation	Method	Results
0000	000000	000000000

Asymptotic distribution under the null

Theorem Under some mild assumptions and the null hypothesis H_0 :

- Let Γ be a set of finite positive integers, $[\{iSPU(\gamma) - \mu(\gamma)\}/\sigma(\gamma)]'_{\gamma \in \Gamma}$ converges weakly to a normal distribution N(0, R) as $n, p \to \infty$
- When $\gamma = \infty$, let $a_p = 2 \log p \log \log p$, for any $x \in \mathbb{R}$, $Pr\{iSPU(\infty) - a_p \le x\} \rightarrow \exp\{-\pi^{-1/2}\exp(-x/2)\}$ as $n, p \rightarrow \infty$

■ $[{iSPU(\gamma) - \mu(\gamma)}/\sigma(\gamma)]'_{\gamma \in \Gamma}$ is asymptotically independent with $iSPU(\infty)$

Outline

Problem formulation

Method

Simulation results

Application to ADNI data

Problem formulation	Method	Results
0000	000000	00000000

Simulation results: validation of theorem

Empirical Type I errors and powers (%) for a linear model with $n=200,\ p=1000,\ q=1000,$ and $\eta=0.99$

Asymptotics (parametric bootstrap)

С	0	0.3	0.5	0.7
iSPU(1)	5.6 (5.4)	6.7 (6.1)	6.6 (6.3)	7.5 (7.2)
iSPU(2)	3.6 (3.3)	4.2 (5.7)	6.6 (8.2)	15.3 (18.9)
iSPU(3)	5.0 (4.8)	6.4 (5.6)	14.6 (13.5)	41.7 (40.1)
iSPU(4)	3.8 (1.8)	9.1 (7.5)	29.5 (26.4)	54.6 (52.1)
iSPU(6)	4.9 (2.2)	18.2 (13.3)	38.8 (33.8)	61.9 (58.2)
$iSPU(\infty)$	3.5 (4.6)	16.1 (18.3)	36.5 (38.7)	61.4 (61.9)
aiSPU	5.3 (4.1)	16.6 (16.5)	38.5 (38.3)	61.4 (60.1)

Problem formulation	Method	Results
0000	000000	00000000

Power comparison under a linear model

Sparse alternative ($\eta = 0.99$)

Problem formulation	Method	Results
0000	000000	000000000

Power comparison under a linear model

Dense alternative ($\eta = 0.23$)

Type I error rates under a logistic model

Empirical Type I error rates of various tests under $G \times E$ interaction simulations with n = 2000 and various q

* Inflated Type I error rates

q	25	50	100	300	500
GESAT	0.061	0.055	0.103*	0.636*	1.000*
aiSPU(Oracle)	0.067	0.049	0.052	0.057	0.047
aiSPU(TLP)	0.061	0.054	0.053	0.042	0.047

Outline

Problem formulation

Method

Simulation results

Application to ADNI data

Problem formulation	Method	Results
0000	000000	0000000000

ADNI data analysis: pathway-gender interactions

- Brain development and adult brain structure differ by gender (Cosgrove et al. 2007)
- 214 healthy controls (Y = 1); 364 MCl subjects (Y = 0)
- Main effects: years of education, age, intracranial volume measured at baseline, gender, and genetic variants

■ aiSPU identified one significant pathway Fructose and mannose metabolism (hsa00051, p-value = 3 × 10⁻⁴);

GESAT failed to do so (p-value = 0.016)

Method 000000

ADNI data analysis: gene-gender interactions

- Candidate gene study (Gene APOE)
- aiSPU identified APOE and gender interaction effects (*p*-value = 0.039)

GESAT failed to identify (p-value = 0.56)

■ Women who are positive for the APOE *ϵ*4 are at greater risk of developing AD than men with this allele (Altmann et al. 2014)

Problem	formulation
0000	

Method 000000 Results 00000000

Acknowledgement

Thank you!

Robustness of choice of Γ

Empirical powers of aSPU with different Γ set. Γ set aSPU_1, aSPU_2, aSPU_3, aSPU_4 represent aSPU with $\Gamma_1 = \{1, 2, \dots, 4, \infty\}, \Gamma_2 = \{1, 2, \dots, 6, \infty\}, \Gamma_3 = \{1, 2, \dots, 8, \infty\}, \text{ and } \Gamma_4 = \{1, 2, \dots, 10, \infty\}, \text{ respectively.}$ We set n = 200 and p = 2000.

Asymptotics-based method

$$p_O = 1 - \int_{\substack{s = (s_\gamma: \text{odd } \gamma \in \Gamma)' \\ -T_O \leq s_\gamma \leq T_O}} N(0, R_O) ds$$

$$p_E = 1 - \int_{\substack{t = (t_{\gamma}: \text{even } \gamma \in \Gamma)' \\ -\infty \le t_{\gamma} \le T_E}} N(0, R_E) dt$$

 $p_{\min} := \min\{p_O, p_E, p_\infty\}$

$$p_{aSPU} = 1 - (1 - p_{min})^3$$

Application to ADNI data: validation of theorem

Comparison between the asymptotics- and the parametric bootstrap-based *p*-values for KEGG pathways

More details on proof outline

- For finite γ: if all SNPs are independent, we can apply CLT directly; use Bernstein's block to make the leading term almost independent
- For asymptotically independent: the distribution of SPU(γ) conditional on SPU(∞) is the same as the unconditional version

Difference of convex (DC) algorithm

Estimate α by minimizing min S(α) = -L(α) + λP(α)
DC decomposition of S(α):

$$S(\alpha) = S_1(\alpha) - S_2(\alpha)$$

$$S_1(\alpha) = -L(\alpha) + \lambda \sum_{j=1}^{q} |\alpha_j|$$

$$S_2(lpha) = \lambda \sum_{j=1}^q \max(|lpha_j| - \tau, 0)$$

Approximate the $S_2(\alpha)$, then we have

$$S^{(m)}(\alpha) = -L(\alpha) + \lambda \sum_{j=1}^{q} |\alpha_j| I(|\hat{\alpha}_j^{(m-1)}| \le \tau)$$

Details on GESAT

$$Q = (Y - \mu(\hat{\alpha}^R))'XX'(Y - \mu(\hat{\alpha}^R))$$

- Follow a mixture of χ^2 distribution under the null
- \sqrt{n} -consistent (Knight and Fu 2000): $\sqrt{n}(\hat{\alpha}^R \alpha) = O_p(1)$ Only valid when the cov(Z) is non-negative (small q)
- Cannot control Type I error rate when q is large

Details on three-step procedure

Desparsifying the Lasso: Lasso plus a one step bias correction

Three-step procedure (Zhang and Cheng, 2017)

- Random sampling splitting: $\mathcal{D}_1 \And \mathcal{D}_2$
- Marginal screening based on \mathcal{D}_1
- Testing after screening based on D_2 : $T_{nst} = \max_j \sqrt{n} |\hat{\beta}^{DL}|; T_{st} = \max_j \sqrt{n} |\hat{\beta}^{DL}| / sd(\hat{\beta}^{DL})$
- Error term will be **out of control** for other type statistics (Sum, SSU)
- Only apply to a linear model

Asymptotic power analysis

$$\Pr(T_{\mathsf{aiSPU}} = \min_{\gamma \in \Gamma} P_{\mathsf{iSPU}(\gamma)} < p_{\alpha}^*) \ge \Pr(P_{\mathsf{iSPU}(\gamma)} < p_{\alpha}^*)$$

 \blacksquare p_{α}^* : critical threshold under H_0 with significance level α

■ The asymptotic power of aiSPU is 1 if there exists $\gamma \in \Gamma$ such that $Pr(P_{iSPU(\gamma)} < p_{\alpha}^*) \rightarrow 1$

Asymptotic power analysis

• Unknown truth: size of $P_0 = \{j : \beta_j \neq 0\}$ is $k = p^{1-\eta}$

• "Dense" alternatives ($\eta < 1/2$)

- All variables are associated and with the same effect size: iSPU(1) is asymptotically most powerful among iSPU(γ)'s
- Half variables are positively associated; the other half are negatively associated: iSPU(2) is asymptotically most powerful
- "Sparse" alternatives $(\eta > 1/2)$:
 - The asymptotic power of iSPU with finite γ is strictly less than 1
 - iSPU(∞) is more powerful