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Problem formulation Method Results

Motivations

Practical motivation: testing gene-environment interactions

󰃈 Complex diseases are often caused by the interplay of genes

and the environment

Theoretical motivations:

󰃈 Testing high-dim groups of parameters with high-dim nuisance

parameters is largely untouched

󰃈 Existing methods hard to control Type I error rates and

maintain high power
1



Problem formulation Method Results

Problem formulation

󰃈 Yi is the phenotype (outcome) (i = 1, . . . , n)

󰃈 Z1, . . . ,Zq are the q covariates (age, gender, environmental

effect, genetic effect, etc.) (high-dimensional)

󰃈 X1,X2, . . . ,Xp are the p gene-environment interactions

(high-dimensional)

󰃈 µi = E (Yi |Z1, . . . ,Zq,X1, . . . ,Xp)

Model

µi = g−1(α0 + α1Zi1 + · · ·+ αqZiq + β1Xi1 + · · ·+ βpXip)

󰃈 Hypothesis of no gene-environment interaction effect

H0 : β1 = · · · = βp = 0 v.s. H1 : At least one βj ∕= 0
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Problem formulation Method Results

New statistical challenge

󰃈 Estimating α under the H0 is difficult

󰃈 Use a penalized regression framework:

min−L(α) + λP(α)

󰃈 Ridge: P(α) =
󰁓q

j=1 α
2
j ; Lasso: P(α) =

󰁓q
j=1 |αj |

󰃈 Lasso yields sparse but biased estimation
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Problem formulation Method Results

Existing methods

Method GESAT (Lin et al., Bio-

statistics, 2013)

Three step procedure

(Zhang and Cheng,

JASA, 2017)

Test statistic SSU + Ridge penalty Tst = maxj
√
n|β̂DL|

sd(β̂DL)

Pros Fast; easy to use Powerful under sparse

alternative

Cons Fail to control Type I er-

ror rates when q is large

Only for linear mod-

els; Lose power under

“dense” alternatives

Note: β̂DL is the de-sparsified (or de-biased) Lasso: Lasso plus a

one step bias correction
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Problem formulation Method Results

Oracle estimator

󰃈 Oracle estimator: MLE if we know which αj = 0

󰃈 If we know the oracle estimator, it will reduce to the

low-dimensional nuisance parameter situations

Question

How to get the oracle estimator?
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Problem formulation Method Results

Our idea: using TLP to estimate nuisance parameter
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J(αj) with τ = 1

󰃈 Truncated Lasso penalty (TLP):

J(αj) = min(|αj |, τ)
(Shen et al. JASA, 2012)

󰃈 TLP consistently reconstructs the

oracle estimator under some mild

conditions

󰃈 TLP is a non-convex penalty. I

develop an R package “glmtlp”

Online manual:

wuchong.org/glmtlp.html
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Problem formulation Method Results

New test: iSPU and aiSPU

󰃈 Apply the adaptive testing idea to maintain high power across

different cases

󰃈 Score Uj =
1
n

󰁓n
i=1(Yi − µ̂0i )Xij , 1 ≤ j ≤ p

µ̂0i = g−1(α̂TLP
0 + Z1i α̂

TLP
1 + · · ·+ Z1qα̂

TLP
q )

󰃈 iSPU(γ): iSPU(γ) =
󰁓p

j=1 U
γ
j

󰃈 iSPU(∞): iSPU(∞) = max1≤j≤p nU
2
j /σjj

󰃈 aiSPU: TaiSPU = minγ∈Γ PiSPU(γ)

• Γ = {1, 2, . . . , 6,∞}
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Problem formulation Method Results

Asymptotic distribution under the null

Theorem
Under some mild assumptions and the null hypothesis H0:

󰃈 Let Γ be a set of finite positive integers,

[{iSPU(γ)− µ(γ)}/σ(γ)]′γ∈Γ converges weakly to a normal

distribution N(0,R) as n, p → ∞

󰃈 When γ = ∞, let ap = 2 log p − log log p, for any x ∈ R,
Pr{iSPU(∞)− ap ≤ x} → exp{−π−1/2 exp(−x/2)} as

n, p → ∞

󰃈 [{iSPU(γ)− µ(γ)}/σ(γ)]′γ∈Γ is asymptotically independent

with iSPU(∞)
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Problem formulation Method Results

Simulation results: validation of theorem

Empirical Type I errors and powers (%) for a linear model with

n = 200, p = 1000, q = 1000, and η = 0.99

Asymptotics (parametric bootstrap)

c 0 0.3 0.5 0.7

iSPU(1) 5.6 (5.4) 6.7 (6.1) 6.6 (6.3) 7.5 (7.2)

iSPU(2) 3.6 (3.3) 4.2 (5.7) 6.6 (8.2) 15.3 (18.9)

iSPU(3) 5.0 (4.8) 6.4 (5.6) 14.6 (13.5) 41.7 (40.1)

iSPU(4) 3.8 (1.8) 9.1 (7.5) 29.5 (26.4) 54.6 (52.1)

iSPU(6) 4.9 (2.2) 18.2 (13.3) 38.8 (33.8) 61.9 (58.2)

iSPU(∞) 3.5 (4.6) 16.1 (18.3) 36.5 (38.7) 61.4 (61.9)

aiSPU 5.3 (4.1) 16.6 (16.5) 38.5 (38.3) 61.4 (60.1)
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Problem formulation Method Results

Power comparison under a linear model

Sparse alternative (η = 0.99)
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Problem formulation Method Results

Power comparison under a linear model

Dense alternative (η = 0.23)
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Problem formulation Method Results

Type I error rates under a logistic model

Empirical Type I error rates of various tests under G × E

interaction simulations with n = 2000 and various q

* Inflated Type I error rates

q 25 50 100 300 500

GESAT 0.061 0.055 0.103* 0.636* 1.000*

aiSPU(Oracle) 0.067 0.049 0.052 0.057 0.047

aiSPU(TLP) 0.061 0.054 0.053 0.042 0.047
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Problem formulation Method Results

ADNI data analysis: pathway-gender interactions

󰃈 Brain development and adult brain structure differ by gender

(Cosgrove et al. 2007)

󰃈 214 healthy controls (Y = 1); 364 MCI subjects (Y = 0)

󰃈 Main effects: years of education, age, intracranial volume

measured at baseline, gender, and genetic variants

󰃈 Bonferroni correction; 96 KEGG pathways

(0.05/100 = 5× 10−4)

󰃈 aiSPU identified one significant pathway Fructose and

mannose metabolism (hsa00051, p-value = 3× 10−4);

GESAT failed to do so (p-value = 0.016)
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Problem formulation Method Results

ADNI data analysis: gene-gender interactions

󰃈 Candidate gene study (Gene APOE )

󰃈 aiSPU identified APOE and gender interaction effects (p-value

= 0.039)

GESAT failed to identify (p-value = 0.56)

󰃈 Women who are positive for the APOE 󰂃4 are at greater risk

of developing AD than men with this allele (Altmann et al.

2014)
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Problem formulation Method Results
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Robustness of choice of Γ

Sparse alternative: 2 “causal”
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Empirical powers of aSPU with different Γ set. Γ set aSPU 1,

aSPU 2, aSPU 3, aSPU 4 represent aSPU with

Γ1 = {1, 2, . . . , 4,∞}, Γ2 = {1, 2, . . . , 6,∞},
Γ3 = {1, 2, . . . , 8,∞}, and Γ4 = {1, 2, . . . , 10,∞}, respectively.
We set n = 200 and p = 2000.



Asymptotics-based method

pO = 1−
󰁝

s=(sγ :odd γ∈Γ)′

−TO≤sγ≤TO

N(0,RO)ds

pE = 1−
󰁝

t=(tγ :even γ∈Γ)′

−∞≤tγ≤TE

N(0,RE )dt

pmin : = min{pO , pE , p∞}

paSPU = 1− (1− pmin)
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Application to ADNI data: validation of theorem

SPU(1)
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Comparison between the asymptotics- and the parametric

bootstrap-based p-values for KEGG pathways



More details on proof outline

󰃈 For finite γ: if all SNPs are independent, we can apply CLT

directly; use Bernstein’s block to make the leading term

almost independent

󰃈 For asymptotically independent: the distribution of SPU(γ)

conditional on SPU(∞) is the same as the unconditional

version



Difference of convex (DC) algorithm

󰃈 Estimate α by minimizing min S(α) = −L(α) + λP(α)

󰃈 DC decomposition of S(α):

S(α) = S1(α)− S2(α)

S1(α) = −L(α) + λ

q󰁛

j=1

|αj |

S2(α) = λ

q󰁛

j=1

max(|αj |− τ, 0)

󰃈 Approximate the S2(α), then we have

S (m)(α) = −L(α) + λ

q󰁛

j=1

|αj |I (|α̂(m−1)
j | ≤ τ)



Details on GESAT

󰃈 Q = (Y − µ(α̂R))′XX ′(Y − µ(α̂R))

󰃈 Follow a mixture of χ2 distribution under the null

󰃈 √
n-consistent (Knight and Fu 2000):

√
n(α̂R − α) = Op(1)

Only valid when the cov(Z ) is non-negative (small q)

󰃈 Cannot control Type I error rate when q is large



Details on three-step procedure

󰃈 Desparsifying the Lasso: Lasso plus a one step bias correction

󰃈 Three-step procedure (Zhang and Cheng, 2017)

• Random sampling splitting: D1 & D2

• Marginal screening based on D1

• Testing after screening based on D2:

Tnst = maxj
√
n|β̂DL|; Tst = maxj

√
n|β̂DL|/sd(β̂DL)

• Error term will be out of control for other type statistics

(Sum, SSU)

• Only apply to a linear model



Asymptotic power analysis

Pr(TaiSPU = minγ∈Γ PiSPU(γ) < p∗α) ≥ Pr(PiSPU(γ) < p∗α)

󰃈 p∗α: critical threshold under H0 with significance level α

󰃈 The asymptotic power of aiSPU is 1 if there exists γ ∈ Γ such

that Pr(PiSPU(γ) < p∗α) → 1



Asymptotic power analysis

󰃈 Unknown truth: size of P0 = {j : βj ∕= 0} is k = p1−η

󰃈 “Dense” alternatives (η < 1/2)

• All variables are associated and with the same effect size:

iSPU(1) is asymptotically most powerful among iSPU(γ)’s

• Half variables are positively associated; the other half are

negatively associated: iSPU(2) is asymptotically most powerful

󰃈 “Sparse” alternatives (η > 1/2):

• The asymptotic power of iSPU with finite γ is strictly less than

1

• iSPU(∞) is more powerful


