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An integrative multiomics analysis identifies putative causal
genes for COVID-19 severity
Lang Wu1,7✉, Jingjing Zhu1,7, Duo Liu1,2, Yanfa Sun1,3,4,5 and Chong Wu6✉

PURPOSE: It is critical to identify putative causal targets for SARS coronavirus 2, which may guide drug repurposing options to
reduce the public health burden of COVID-19.
METHODS: We applied complementary methods and multiphased design to pinpoint the most likely causal genes for COVID-19
severity. First, we applied cross-methylome omnibus (CMO) test and leveraged data from the COVID-19 Host Genetics Initiative
(HGI) comparing 9,986 hospitalized COVID-19 patients and 1,877,672 population controls. Second, we evaluated associations using
the complementary S-PrediXcan method and leveraging blood and lung tissue gene expression prediction models. Third, we
assessed associations of the identified genes with another COVID-19 phenotype, comparing very severe respiratory confirmed
COVID versus population controls. Finally, we applied a fine-mapping method, fine-mapping of gene sets (FOGS), to prioritize
putative causal genes.
RESULTS: Through analyses of the COVID-19 HGI using complementary CMO and S-PrediXcan methods along with fine-mapping,
XCR1, CCR2, SACM1L, OAS3, NSF, WNT3, NAPSA, and IFNAR2 are identified as putative causal genes for COVID-19 severity.
CONCLUSION: We identified eight genes at five genomic loci as putative causal genes for COVID-19 severity.
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INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic represents a
huge public health burden globally. Earlier research has revealed
that specific molecular targets are essential for SARS coronavirus 2
(SARS-CoV-2) to enter into human cells [1]. Remdesivir, which
blocks such targets, is approved by the US Food and Drug
Administration to treat COVID-19. However, currently there
remains no effective treatment for COVID-19. Therefore, there is
a critical need to uncover additional causal molecular targets for
COVID-19. A better characterization of targets can guide drug
repurposing for identifying new uses of existing drugs. The fatality
rate of COVID-19 is predominantly driven by those patients with
severe respiratory failure who are hospitalized [2]. Causal
molecular targets that can guide drug repurposing options are
thus anticipated to be causally related to COVID-19 severity.
However, such causal targets are quite difficult to identify due to
the limitations of conventional studies and insufficient biological
understanding of human genes.
One strategy to potentially reduce limitations of conventional

study designs and identify candidate associated genes is to apply
gene-level association tests that aggregate potential regulatory
effects of genetic variants on genes [3–7]. Due to the random
assortment of genetic alleles transferred from parent to offspring
at the time of gamete formation, this approach focusing on
genetically predicted gene expression should be less susceptible
to selection bias, confounding effects, and reverse causation [8]. In
the past several years, we and others have developed novel
statistical methods in such transcriptome-wide association studies
(TWAS) [3–7, 9]. The conventional TWAS design aims to develop
genetic prediction models for gene expression using statistical

methods, and further apply the gene expression prediction
models to genome-wide association study (GWAS) data sets of
the diseases of interest to identify genes with genetically
predicted expression and associate them with the diseases.
Applying such methods, we and others have conducted TWAS
of multiple human diseases and identified multiple disease related
genes [3, 5, 8–11].
Besides the conventional TWAS design, there are opportunities

to develop novel integrative analyses by incorporating additional
epigenetic and functional information. For example, DNA methy-
lation interacts between genome and environment and is
established to play an important role in the etiology of multiple
diseases. It is known that DNA methylation could potentially
regulate expression of genes. In several methylome-wide associa-
tion studies (MWAS), we found that specific CpG sites could
influence disease risk by regulating the expression of disease
target genes [12, 13]. In earlier work, we have also shown that
integrating information on enhancer–promoter interactions can
improve statistical power for gene-level association tests [9, 14].
Built upon these works, we recently developed a novel gene-level
association testing method, cross-methylome omnibus (CMO), by
integrating genetically regulated DNA methylation in promoters,
enhancers, and the gene body to identify disease related genes
[15]. As demonstrated in our recent work, through simulation
analyses and applied analyses of brain imaging–derived pheno-
types and Alzheimer disease, CMO achieves high statistical power
while well controlling for the type I error rate [15]. Importantly,
CMO could reproducibly identify additional Alzheimer
disease–associated genes that are not able to be identified by
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competing methods. This suggests that the novel method of CMO
can be a complementary method for TWAS.
Despite the productivity of TWAS design using conventional

methods (e.g., TWAS or S-PrediXcan) and novel methods (e.g.,
CMO) in identifying novel disease-associated genes, it is worth
noting that such identified associated genes do not necessarily
infer causality [16]. Aligned with other reports, although TWAS is
useful for prioritizing causal genes, false positive findings cannot
be avoided for some of the identified associations [16]. There are
several potential reasons that could induce these, such as
correlated expression across individuals, correlated predicted
expression, and shared variants [16]. One strategy that can
potentially prioritize causal genes in TWAS analyses is fine-
mapping. Recently, we and others have developed several
methods for fine-mapping in TWAS [17–19]. Focusing on a
method we recently developed, fine-mapping of gene sets
(FOGS), we find that FOGS adequately controls for type I error
rates under various scenarios and performs better than competing
methods, including FOCUS and p value ranking of TWAS results
[17, 19]. Specifically, FOGS could achieve a higher area under the
receiver operating characteristic (ROC) curve (AUC), identify more
causal genes at the same false positive rate, and yield a smaller
number of false positives at the same true positive rate [19].
Herein, we conducted a comprehensive multistage integrative

multiomics study leveraging the data from COVID-19 patients and
controls included in the COVID-19 Host Genetics Initiative (HGI)
[20]. We first applied the CMO method to generate a list of
promising genes associated with COVID-19 severity for discovery
(comparing 9,986 hospitalized patients versus 1,877,672 popula-
tion controls). We further applied the conventional S-PrediXcan
method to characterize associations of predicted expression of
these genes with COVID-19 severity. For associated genes, we
further evaluated their associations with another COVID-19
phenotype, comparing very severe respiratory confirmed COVID
versus population controls. Finally, we applied the FOGS fine-
mapping method to determine the most likely causal genes for
severe COVID-19 outcome. In our primary analyses, we focused on
blood tissue to capture the systematic pattern of the body. It is
also known that the immune system plays an important role in the
host response to viral infection. By focusing on blood tissue we
can well capture the effects of genes acting in immune related
pathways. We also analyzed lung tissue as another likely target
tissue for COVID-19 in our S-PrediXcan analyses.

MATERIALS AND METHODS
Genetic association data sets for COVID-19 severity in primary
analyses
For evaluation of the association with COVID-19 severity, we used
summary statistics data of the most recent version of GWAS analyses
from the COVID-19 HGI (Release 5 [January 2021]) [20]. Detailed
information on participating studies, quality control, and analyses has
been provided on the COVID-19 HGI website (http://www.covid19hg.org/
results/). Informed consent was obtained from all subjects. In brief, for
discovery analyses comparing hospitalized patients and population
controls, data (B2_ALL_eur) from 9,986 hospitalized COVID-19 patients
and 1,877,672 population controls from studies in Biobanque Quebec
COVID19, Columbia University COVID19 Biobank, Estonian Biobank,
Geisinger Health System, Latvia COVID-19 research platform, UCLA
Precision Health COVID-19 Biobank, 24Genetics, Amsterdam UMC COVID
study group, Determining the Molecular Pathways and Genetic Predis-
position of the Acute Inflammatory Process Caused by SARS-CoV-2,
COVID19-Host(a)ge, GEN-COVID, reCOVID, deCODE, Million Veterans
Program, 23andMe, Bonn Study of COVID19 genetics, FHoGID, Ancestry,
The Genetic Predisposition to Severe COVID-19, Genomic, FinnGen,
Genetic Modifiers for COVID-19 Related Illness, and UK Biobank were
used. Hospitalized COVID-19 cases represented patients with (1) laboratory
confirmed SARS-CoV-2 infection (RNA and/or serology based) and (2)
hospitalization due to corona-related symptoms. Controls represent those
that are not cases. The included subjects are Europeans only, to ensure the

homogeneous population structure for the analyses. Only variants with
imputation quality > 0.6 were retained. A fixed-effect meta-analysis of
individual studies was performed with inverse variance weighting.

CMO test
Details of the CMO method have been described elsewhere [15]. CMO is an
integrative gene-level test for identifying associated genes that may
impact the trait of interest through DNA methylation pathways. Briefly,
three main steps are involved. First, CMO links CpG sites located in
enhancers, promoters, and the gene body to a target gene, considering
that DNA methylation in enhancers and promoters may also play
important roles in gene regulation. Importantly, CMO integrates compre-
hensive enhancer–promoter interaction information from a comprehen-
sive database called GeneHancer and links CpG sites that are located in the
enhancers, promoters, and the gene body to their target genes [21].
Second, by leveraging comprehensive blood DNA methylation genetic
prediction models that were developed using a large reference data set
involving 4,008 subjects [22], CMO tests associations between genetically
regulated DNA methylation of each CpG site and COVID-19 severity using
several widely used weighted gene-based tests, including burden, sum of
squared score (SSU), and Aggregated Cauchy Association Test (ACAT) tests.
The methylation prediction models were developed focusing on 151,729
CpG sites with a significant methylation quantitative trait locus (mQTL),
and the lasso method was applied with genetic variants (i.e., single-
nucleotide polymoprhisms [SNPs]) closer than 250 kb to each CpG site as
potential predictors [22]. Because the optimal test depends on the
underlying truth, which is unknown in practice, to maximum statistical
power, we apply a Cauchy combination test to combine the results from
burden, SSU and ACAT tests [23]. Third, CMO applies a Cauchy
combination test to combine statistical evidence from multiple CpG sites
for each target gene to determine the associations of target gene–COVID-
19 severity. A Benjamini–Hochberg false discovery rate (FDR) of < 0.05 was
used to adjust for multiple comparisons.

S-PrediXcan test for candidate genes identified from CMO test
To better characterize the candidate genes identified from the CMO test,
we further conducted analyses using the orthogonal and complementary
S-PrediXcan method to evaluate associations of their genetically predicted
expression with COVID-19 severity [24]. We first leveraged comprehensive
blood gene expression genetic prediction models that were developed
using a reference data set involving subjects as included in the version 8 of
the Genotype-Tissue Expression (GTEx) [25]. A modified cross-tissue
UTMOST framework was used to build gene expression genetic models.
[26, 27] In brief, SNPs within 1 Mb upstream and downstream of each gene
body were included as candidate predictor variables in the model. The
residual of the normalized gene expression (TPM) was used for model
development after adjustment of age, sex, sequencing platform, the first
five principal components (PCs), and probabilistic estimation of expression
residuals (PEER) factors. The effect sizes were assessed by minimizing the
loss function with a LASSO penalty on the columns (within-tissue effects)
and a group LASSO penalty on the rows (cross-tissue effects). The group
penalty term implemented sharing of the information from feature (SNP)
selection across all the involved tissues. The original model training was
modified by unifying the hyperparameter pairs to avoid the overestimation
of the prediction performance [26, 27]. The details for the S-PrediXcan
method are described elsewhere [24]. Briefly, the associations of
genetically predicted gene expression with COVID-19 severity were
estimated based on genetic prediction model weights, summary statistics
of genetic variants with COVID-19 severity, and a variant correlation
(linkage disequilibrium [LD]) matrix. We also tested the associations by
leveraging lung tissue gene expression models developed using the same
modified UTMOST method [27].
We further evaluated associations of identified genes with another

COVID-19 phenotype. Briefly, we compared very severe respiratory
confirmed COVID versus population controls by leveraging data sets of
A2_ALL_eur (Europeans; 5,101 cases and 1,383,241 controls). S-PrediXcan
was used to infer the gene–phenotype associations. We did not compare
hospitalized COVID-19 patients versus nonhospitalized COVID-19 patients
considering that only a relatively small sample size was available, which
may induce insufficient power (B1_ALL_eur data set for Europeans: 4,829
cases and 11,816 controls). We did not investigate the data set of
C2_ALL_eur (Europeans; 38,984 cases and 1,644,784 controls), which
compared COVID-19 patients versus population controls. This is because
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the outcome of COVID-19 susceptibility would be difficult to interpret, as
this may only reflect whether or not an individual was exposed to the
SARS-CoV-2 virus.

FOGS fine-mapping analysis to determine putative causal genes
for COVID-19 severity
To determine the most likely causal genes for COVID-19 severity, we
conducted FOGS fine-mapping analysis for the genes supported by both
CMO and S-PrediXcan analyses. Details for FOGS have been described in
our earlier publication [19]. In brief, two steps are involved. First, a
conditional analysis with ridge regression is conducted to account for the
effects of other variants/genes in the locus of interest. Second, FOGS
integrates genetic prediction model weights and conditional Z-scores by
an adaptive test to maintain high statistical power.

RESULTS
The overall study design flow is presented in Fig. 1. The
description of several data sets used in this study is included in
Supplementary Table 1. Based on the CMO test (Supplementary
Table 2; Supplementary Figure 1), we identified significant
associations of 76 genes with COVID-19 severity comparing
hospitalized patients and population controls at FDR < 0.05
(Table 1). Interestingly, some of these genes tend to be implicated
in immunological pathways (Table 1). Of these genes, there were
also significant associations between genetically predicted expres-
sion in blood tissue of nine genes and COVID-19 severity
comparing hospitalized patients and population controls (Table 2).
Through analyzing another outcome comparing very severe
respiratory confirmed patients versus controls, eight of them
(except for CCR5) were validated at P < 0.10 (Table 2). Based on
fine-mapping through FOGS, all these genes at five loci were
determined to be putative causal genes. Plots showing associa-
tions of SNPs with COVID-19 severity (B2 outcome) at the locus of
each of the identified putative causal genes were shown in
Supplementary Figures 2–9. Positive associations between pre-
dicted expression levels in blood tissue and COVID-19 severity
were detected for XCR1, CCR2, and OAS3. Conversely, associations
between lower predicted expression levels in blood tissue and
increased COVID-19 severity were identified for SACM1L, NSF,
WNT3, NAPSA, and IFNAR2. In analyses of lung tissue gene
expression prediction models, although for several of these genes
there was no prediction model developed, for the three genes

with models available (CCR2, WNT3, and IFNAR2), consistent
associations were observed as well (Table 3).

DISCUSSION
This is one of the earliest studies to comprehensively evaluate the
associations of genes across the genome with COVID-19 severity
using genetic instruments combined with different layers of
functional information. After careful assessment including fine-
mapping analysis, we identified eight putative causal genes for
COVID-19 severity, namely, XCR1, CCR2, and SACM1L on chromo-
some 3; OAS3 on chromosome 12; NSF and WNT3 on chromosome
17, NAPSA on chromosome 19; and IFNAR2 on chromosome 21.
Our multistage study provides new information to improve our
understanding of putative causal targets for SARS-CoV-2, which
could be useful for further drug repurposing efforts. The
identification of additional therapeutic strategies holds the
promise of reducing the public health burden of COVID-19.
Literature supports potential functional roles of several of the

identified genes. XCR1, CCR2, and SACM1L locate at locus 3p21.31.
XCR1 is thought to mediate chemokine signaling pathways for
inflammatory regulation, leukocyte chemotaxis, as well as immuno-
pathies inducing lung injury [28]. Previous work suggested that this
gene was critical for the advancement of influenza virus infection
[29]. CCR2 is known to promote chemotaxis of monocyte/
macrophage towards inflammation sites [30]. It has been reported
that the canonical ligand for CCR2 is highly expressed in
bronchoalveolar lavage fluid from lung tissue of COVID-19 patients
during mechanical ventilation [31], and circulating MCP1 levels are
related to more severe disease [32]. Another study reported that
SACM1L expression was significantly changed in response to top
candidate drugs from L1000 and SARS-CoV-2 settings [33].
Furthermore, the genetic locus harboring rs17713054 was identified
to be coaccessible with the promoter region of several genes
including SACM1L in lung single cells [34]. In the earlier GWAS of the
Severe Covid-19 GWAS Group, rs11385942 at this locus showed a
significant association with COVID-19 severity at the genome-wide
level (P < 5×10−8) [35]. Our work suggested that XCR1, CCR2, and
SACM1L could potentially be the causal genes at this locus. A more
recent GWAS of critical illness in COVID-19 reported a novel variant
rs10735079 at chr12q24.13 in a gene cluster encoding antiviral
restriction enzyme activators including OAS3 [30]. In another study, it
was also identified that a Neandertal haplotype that is protective

Of them, eight genes showed consistent associations by comparing 5,101 very severe
respiratory confirmed patients vs 1,383,241 controls

FOGS fine-mapping analysis confirms these eight genes as putative causal genes

Additional analyses of lung tissue predicted gene expression levels
confirm associations of these genes with COVID-19 severity

Of them, nine genes showed significant predicted expression in blood-COVID-19 severity
associations using S-PrediXcan

Cross methylome omnibus test to identify 76 candidate genes associated with COVID-19
severity comparing 9,986 hospitalized patients and 1,877,672 controls

Fig. 1 Study design flow chart. Firstly, we applied cross methylome omnibus (CMO) test and leveraged data from The COVID-19 host
genetics initiative (HGI) comparing 9,986 hospitalized COVID-19 patients and 1,877,672 population controls, in which we identified 76
candidate genes. Secondly, we evaluated associations using the complementary S-PrediXcan method and leveraging blood gene expression
prediction models, from which nine genes showed an association. Thirdly, we assessed associations of the identified genes with another
COVID-19 phenotype, comparing very severe respiratory confirmed COVID vs population controls, and eight of the genes showed consistent
associations. We further applied FOGS fine-mapping method which confirms these eight genes as putative causal genes. Finally, additional
analyses of lung tissue predicted gene expression confirm associations of these genes with COVID-19 severity.
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against severe COVID-19 contains all or parts of three genes
including OAS3. Interestingly, the SNPs showing the most significant
associations are in OAS3 [36]. IFNAR2 at chromosome 21 encodes
type I interferon (IFN-α/β), which is known to play a key role in
human antiviral immunity [37]. Previous work reported that probes
tagging this gene showed pleiotropic association with hospitalized
COVID-19 [38]. Some of the genes suggested by CMO test but not
following S-PrediXcan analyses may also warrant further investiga-
tion. For 42 of the genes, their genetic expression prediction models
were not established using the modified UTMOST modeling
strategy. For the S-PrediXcan analyses, the odd ratios reported in
this study were for genetically predicted expression but not actual
expression levels. Further functional validation to better understand
the exact roles of these genes is needed.
A previous study reported likely causal links of IFNAR2, TYK2, and

CCR2 with COVID-19 critical illness [30]. In the current study, we also
identified IFNAR2 and CCR2. In another study analyzing an earlier
version of COVID-19 HGI data (version 4), genes IFNAR2 and CCR2
were identified with allelic imbalance evidence at COVID-19 GWAS
risk variants (unpublished data). IFNAR2 was also associated with
migraine and throat pain (unpublished data). The genetically
predicted expression of IFNAR2 was further identified to be inversely
associated with creatine kinase. In this study, XCR1 and OAS3 were
also implicated as likely susceptibility genes for COVID-19 severity,
which was consistent with our findings. In the COVID-19 HGI main
manuscript (unpublished data), it was identified that the COVID-19
associated variants modified the expression of OAS1/OAS3/OAS2
(12q24.13) and IFNAR2/IL10RB (21q22.11) in lung. Overall, besides
identifying literature reported genes, in this work we also identified
several novel putative causal genes for COVID-19.
There are several potential limitations in our study. First, due to

the nature of COVID-19 HGI, it is possible that although all are
required to meet the phenotype definition (e.g., be hospitalized
COVID-19 patients), the included cases in different substudies are
not completely homogeneous. For example, the criteria for COVID-
19 patients’ hospitalization could be different across studies/regions,
thus measurement errors could exist. Second, in our analyses, we
were not able to comprehensively adjust for underlying cardiovas-
cular and metabolic factors that are reported to be related to COVID-
19 [39]. While a majority of implicated genes (except for OAS3 [40])
have not been reported to be associated with cardiovascular and
metabolic factors according to GWAS Catalog, alleviating the
concern of pleiotropy, further work with adjustment of such
variables is needed to validate our findings. Third, in the data sets
used in our analyses, information about the infection status of SARS-
CoV-2 in the control participants was limited. By using the general
population as controls, severe COVID-19 cases are actually compared
with a large cohort of individuals who may or may not develop
severe COVID-19 upon exposure to the virus. However, the presence
of susceptible subjects in the control group, if any, is expected to

only bias the results toward the null. Future work using cleaner
controls would be necessary to better characterize the relationship.
Fourth, the current study focuses on Europeans, the ethnic group
with the largest available sample size. It would be critical to conduct
analyses focusing on other ethnic groups, to enhance the general-
izability of findings of such work. Currently, the available sample size
of GWAS of COVID-19 in non-European populations is relatively
small. For example, in the COVID HGI, for the B2 outcome, data are
available for only 257 cases of Latinos, 60 cases of Arabs, 948 of
Admixed Americans, 790 of Africans, 186 of South Asians, and 1,414
of East Asians. The power for such analyses would be relatively low.
Additional work for sex specific analyses would be needed as well.
We currently do not have the data available for sex specific analyses.
Finally, besides the outcomes evaluated in the current study,
analyses using brain tissue gene expression models could be helpful
for characterizing factors related to the neurological symptoms of
COVID-19. The available data in the COVID HGI may not be
appropriate for testing this, as neurological symptoms may manifest
in mildly symptomatic COVID-19 individuals. Future work leveraging
cleaner disease phenotype is needed for testing this.
In conclusion, in a large scale multiphase integrative multiomics

study with complementary methods, we identified eight putative
causal genes at five loci for COVID-19 severity. Such findings will
be very meaningful for guiding future drug repurposing efforts
aiming to reduce the COVID-19 public health burden.
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