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Research goal

My long-term research goal is to develop new methods, theories, and software to: 

•identify likely causal risk factors and biomarkers for a complex disease (prostate 

cancer, Alzheimer’s disease, etc.) 

•enhance risk prediction to advance precision medicine 

Research Interests: causal inference (Mendelian randomization), machine learning, 

statistical genetics (polygenic risk score, integrative analysis, TWAS, PWAS) 

Data we work on: UK Biobank (genotype, risk factors, & disease status), GTEx 

(splicing, gene expression, & genotype), ROS/MAP (protein & genotype), GWAS 

summary data, functional annotations, DNA methylation
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Outline

•Background 

•New method: SUMMIT 
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Causal inference in observational data

Random  
assignment

Intervention

Control

•Example: Does smoking cause lung cancer? 

•Randomized clinical trial 

Gold standard 
Randomization balances participant 
characteristics between the groups  

•Challenges: randomized clinical trial would be 
both not feasible and unethical

Does X (risk factor) cause Y (complex disease)?
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Causal inference in observational data

Example: identify causal biomarkers for a complex disease 
Why:  

•understand the etiology 

•drug development 

Challenges:  

•the number of biomarkers is large 

•biomarkers are correlated 

Goal:  
identify likely causal biomarkers by 
using observational data
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Mendelian randomization

• Genome: genetic information 
encoded in 23 chromosome pairs 

• SNP 
variation in a single base pair 
inherited randomly and fixed at 
conception

Randomized clinical trial 
• Gold standard 

• Randomization balances participant 

characteristics between the groups  

Random  
assignment

Intervention

Control

6

My chromosome

Your chromosome
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Mendelian randomization

Hypothetical example 
• Allele A: not smoking 
• Allele C: smoking 
• Not associated with unmeasured 

confounding factors (e.g., drinking) 
• No direct effect on the outcome 

(e.g., lung cancer)
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Inherited 
randomly

Intervention

Control

Allele C

Allele A

Randomized clinical trial 
• Gold standard 

• Randomization balances participant 

characteristics between the groups  

Random  
assignment

Intervention

Control



Mendelian randomization

γp

Instrumental Variables

θ⋮

Gp

SNP

γ1
G1

X Y
Exposure Outcome

SNP
U

Unmeasured confounderϕ1

αp

βXU βYU

SNP  is a valid instrumental variable (IV) if 

•Relevance:  

•Independence:  

•Exclusion restriction: 

j

γj ≠ 0

ϕj = 0

αj = 0

̂βXj
= lm(X ∼ Gj)

̂βYj
= lm(Y ∼ Gj)

Genetic association 
(GWAS)

Structure equation model: 
βXj

= γj + ϕj ⋅ βXU

βYj
= βYj,𝙼 + βYj,𝙳 = θ ⋅ βXj

+ (αj + ϕj ⋅ βYU)

For a valid IV SNP : j
βXj

= γj

βYj
= θ ⋅ βXj
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Two-sample summary-data MR

Two-sample MR setup: 

Strengths of two-sample MR: 

•Increase the power 
•Expand the scope of MR studies

Original data Summary data

Exposure GWAS

Outcome GWAS

{(X*i , G*ij )}
nX

i=1
{( ̂βXj

, σXj)}
p

j=1

{(Yi, Gij)}
nY

i=1 {( ̂βYj
, σYj)}

p

j=1

Inverse variance weighted (IVW) estimator: 

•Assume all IVs are valid 

•Assume no measurement error:  

•  

•The IVW estimator: 

̂βXj
= βXj

̂βYj
= θ ⋅ ̂βXj

+ ϵj

̂θ𝙸𝚅𝚆 =
∑p

j=1
̂βXj

̂βYj
/σ2

Yj

∑p
j=1

̂β2
Xj

/σ2
Yj
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Identify likely causal gene expression

1 Gusev, Alexander, et al. "Integrative approaches for large-scale transcriptome-wide association studies." Nature Genetics 48.3 (2016): 245-252.
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Figure: Workflow of TWAS1



Mendelian randomization
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βYj
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Motivation

•The size of the expression reference panels primarily determines the number of analyzable genes, and 
hence the power of TWASs 

•The average number of expression models increased from 4,570 (v6p) to 7,213 (v8) for one popular 
TWAS method PrediXcan when the average sample size increased from 160 (v6p) to 332 (v8)  

•The existing methods are based on individual-level expression reference panel with limited sample size;  

•eQTLGen consortium has conducted the largest meta-analysis involving 31,684 blood samples from 37 
cohorts
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Q: How can we build expression prediction models using summary-level expression reference 
panel with large sample size?
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SUMMIT: Overview14

Figure: Workflow of SUMMIT

31,684 blood
samples
cis-SNPs

eQTLGen Consortium

GTEx Portal

Gene expression
reference

LD reference (!)

1000 Genomes Project

Testing associations

cis-eQTL
effect sizes

(")

Individual-level GWAS data

Phenotype  ∼ Imputed
expression

Imputing gene expression

Tuning &
validation

Constructing

Summary-level GWAS data

$∗ ≈ "'$
"'!"

where $ is the SNP-trait standardized effect.



SUMMIT
Notation and model setup 

  

•  is the gene expression levels;  is the  standardized genotype 

matrix of p cis-SNPs around the gene;  is the cis-eQTL effect size, 

which can be estimated by  

Y =
p

∑
j=1

wjXj + ϵ

Y X = (X′ 

1, ⋯, X′ 

p)′ N × p

w = (w1, ⋯, wp)′ 

f(w) =
(Y − Xw)′ (Y − Xw)

N
+ Jλ(w) =

Y′ Y
N

+ w′ ( X′ X
N )w − 2w′ 

X′ Y
N

+ Jλ(w)
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SUMMIT
Notation and model setup 

 

•  is a penalty term; such as LASSO, elastic net, MCP, SCAD, and MNet 

•  is p-dimensional vector of standardized marginal effect size 

for cis-SNPs (i.e., correlation between cis-SNPs and gene expression levels) 

•  is the linkage disequilibrium (covariance) matrix of the cis-SNPs. 

•The objective function is  

f(w) =
Y′ Y
N

+ w′ Rw − 2w′ r + Jλ(w),

Jλ( ⋅ )

r = X′ Y/N = (r1, ⋯, rp)′ 

R = X′ X/N

f̃(w) = w′ R̃w − 2w′ ̃r + θw′ w + Jλ(w)
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Ensure a unique solution 
upon optimization

Not depend 
on w



SUMMIT17

Estimating the standardized marginal effect size :  

,  

•where  and  are the z-score and sample size for cis-SNP , respectively.  

•  and  are provided by eQTL summary-level data (such as eQTLGen; publicly available)

r̃

r̃j = Zj / Nj − 1 + Z2
j

Zj Nj j

Zj Nj

Estimating the LD matrix : 

We can estimate LD matrix  from a reference panel (such as 1000 Genomes Project data; publicly 

available) 

High dimensionality problem:  

•Instead of using sample correlation matrix, we use the shrinkage estimator of the LD matrix 

•Stabilize results by shrinking the off-diagonal entries toward zero (the magnitude depends on the 
genetic distance)

R̃

R̃



SUMMIT18

When individual-level GWAS data (genotype data , phenotype , and covariance 

matrix ) are available 

•one can apply a generalized linear regression model to test  

 

•where  is the predicted genetically regulated expression for the trait of interest. 

  

When only summary-level GWAS data are available 

•one can apply a burden-type test: 

 

•where  is the vector of z-scores for all cis-SNPs and V is the LD matrix of analyzed SNPs

Xnew Pnew
Cnew

H0 : β = 0

f(E[Pnew |Xnew, Cnew]) = αCnew + βXnewŵ,

Xnewŵ

Z̃ = Zŵ/ ŵ′ Vŵ,

Z



SUMMIT19

Cauchy combination test to integrate information from  models

 

•where  the -value for model  and  is calculated by .  

•  approximately follows a standard Cauchy distribution, and the -value can be calculated as 

. 

•The Cauchy combination test has been widely used, key benefit:  

• -value approximation is accurate for highly significant results (which are of interest), 

•no need to estimate the correlation structure among the combined -values.

K

T =
K

∑
j=1

R̃2
j tan{(0.5 − pj)π},

pj p j R̃2
j R2

j /∑k
j=1 R2

j

T p

0.5 − arctan(T)/π

p

p
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Methods to be compared21

SUMMIT: SUMMIT with the cis-eQTL summary-level data from eQTLGene (31,684 blood 

samples) 

Lassosum: a popular polygenic risk score method Lassosum with the eQTLGene 

Single tissue method: 

PrediXcan: Elastic Net with GTEx v8 samples (individual-level data; 670 blood samples) 

TWAS-fusion: several methods, including BLUP, BSLMM, Elastic Net, LASSO, and TOP1 

with GTEx v8 samples 

Cross-tissue method: 

MR-JTI: GTEx v8 samples (all available tissues) 

UTMOST: GTEx v8 samples (all available tissues)
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(d)

SUMMIT improves the expression imputation accuracy22

Number of genes with : 

•SUMMIT: 9,749 

•Bechmark methods: Lassosum: 8,249; MR-

JTI: 9,576; TWAS-Fusion: 5,411; PrediXcan: 

7,512; UTMOST: 7,236 

SUMMIT achieved higher prediction accuracy 

in different quantiles compared with all 

benchmark methods (by Kolmogorov-Smirnov 

test)

R2 ≥ 0.01
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(d)

SUMMIT identifies more associations than competing methods23

•Using Bonferroni correction for all methods 

•Based on GWAS summary statistics of 24 

traits (  without adjusting 

for sample overlap across studies 

•When focused on genes with ; 

SUMMIT achieved better results (the 

differences are significant by the paired 

Wilcoxon rank test) 

•SUMMIT can analyze genes with low 

heritability, which often have large causal 

effect sizes on the trait

Ntotal ≈ 5,600,000

R2 ≥ 0.01
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(d)

SUMMIT identifies more associations than competing methods24

•When focused on genes that can be analyzed 

by all the methods; SUMMIT still achieved 

better results
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(d)

SUMMIT achieves higher predictive power for identifying “silver standard” genes25

•Following Barbeira et al., we used a set of 

1,258 likely causal gene-trait pairs curated by 

using the Online Mendelian Inheritance in 

Man (OMIM) database and a set of 29 

gene-trait pairs based on rare variant results 

from exome-wide association studies 

•Provide orthogonal information that is 

independent of the GWAS results 

•All methods performed relatively good; 

SUMMIT achieved the highest AUC



Simulation settings26

Using UK Biobank 

•Randomly selected genotype data from unrelated white British individuals as training data (to 

match with the sample size of real data analyses) 

•10,000 unrelated white British individuals as test data 

•  

•  

• , and  

•  : expression heritability (i.e., the proportion of gene expression variance explained by SNPs) 

• : phenotypic heritability (i.e., the proportion of phenotypic variance explained by gene 

expression levels)

Eg = Xw + ϵe

Y = βEg + ϵp

ϵe ∼ N(0,1 − h2
e ) ϵp ∼ N(0,1 − h2

p)

h2
e

h2
p



Simulation results27
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Simulation results28
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Simulation results29
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Simulation results30
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Online database31



Extension: SUMMIT-FA32



Extension: SUMMIT-FA33



Extension: SUMMIT-FA34



Summary35

•By leveraging eQTL data with large sample-size, SUMMIT improves the accuracy of 

expression prediction in blood, successfully builds expression prediction models for 

genes with low expression heritability, and outperforms benchmark methods for 

identifying risk genes 

•TWAS methods, including SUMMIT, can be viewed as one type of gene-based 

Mendelian randomization (MR) and can provide valid causal interpretations only 

when all genetic variants used in the expression prediction models are valid 

instrumental variables (Strong and uncheckable assumption)



Summary36

•Besides complementary analyses (such as fine-mapping and colocalization), robust 

inference with weak assumptions are needed  

•SUMMIT can be extended to other omics data (proteins, DNA methylation, and 

metabolites) 

•Multi-ethnicity: Improve the robustness and performance (transfer learning) 

•Multi-ethnicity: Identify ethnicity-specific and pan-ethnicity likely causal biomarkers
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