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Outline

•My research goal and motivation 

•Breaking winner’s curse in two-sample MR 

•Correcting pleiotropy in two-sample MR 

•Other works and future directions
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Research goal

My long-term research goal is to develop new methods, theories, and software to: 

•identify likely causal risk factors and biomarkers for a complex disease (prostate 

cancer, Alzheimer’s disease, etc.) 

•enhance risk prediction to advance precision medicine 

Research Interests: causal inference (Mendelian randomization), machine learning, 

statistical genetics (polygenic risk score, integrative analysis, TWAS, PWAS) 

Data we work on: UK Biobank (genotype, risk factors, & disease status), GTEx 

(splicing, gene expression, & genotype), ROS/MAP (protein & genotype), GWAS 

summary data, functional annotations, DNA methylation
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Causal inference in observational data

Random  
assignment

Intervention

Control

•Example: Does smoking cause lung cancer? 

•Randomized clinical trial 

Gold standard 
Randomization balances participant 
characteristics between the groups  

•Challenges: randomized clinical trial would be 
both not feasible and unethical

Does X (risk factor) cause Y (complex disease)?
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Causal inference in observational data

Example: identify causal biomarkers for a complex disease 
Why:  

•understand the etiology 

•drug development 

Challenges:  

•the number of biomarkers is large 

•biomarkers are correlated 

Goal:  
identify likely causal biomarkers by 
using observational data
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Mendelian randomization

• Genome: genetic information 
encoded in 23 chromosome pairs 

• SNP 
variation in a single base pair 
inherited randomly and fixed at 
conception

Randomized clinical trial 
• Gold standard 

• Randomization balances participant 

characteristics between the groups  

Random  
assignment

Intervention

Control
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Mendelian randomization

Hypothetical example 
• Allele A: not smoking 
• Allele C: smoking 
• Not associated with unmeasured 

confounding factors (e.g., drinking) 
• No direct effect on the outcome 

(e.g., lung cancer)
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Inherited 
randomly

Intervention

Control

Allele C

Allele A

Randomized clinical trial 
• Gold standard 

• Randomization balances participant 

characteristics between the groups  

Random  
assignment

Intervention

Control



Mendelian randomization

γp

Instrumental Variables

θ⋮

Gp

SNP

γ1
G1

X Y
Exposure Outcome

SNP
U

Unmeasured confounderϕ1

αp

βXU βYU

SNP  is a valid instrumental variable (IV) if 

•Relevance:  

•Independence:  

•Exclusion restriction: 

j

γj ≠ 0

ϕj = 0

αj = 0

̂βXj
= lm(X ∼ Gj)

̂βYj
= lm(Y ∼ Gj)

Genetic association 
(GWAS)

Structure equation model: 
βXj

= γj + ϕj ⋅ βXU

βYj
= βYj,𝙼 + βYj,𝙳 = θ ⋅ βXj

+ (αj + ϕj ⋅ βYU) ≜ θ ⋅ βXj
+ rj

For a valid IV SNP : j
βXj

= γj

βYj
= θ ⋅ βXj
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Two-sample summary-data MR

Two-sample MR setup: 

Strengths of two-sample MR: 

•Increase the power 
•Expand the scope of MR studies

Original data Summary data

Exposure GWAS

Outcome GWAS

{(X*i , G*ij )}
nX

i=1
{( ̂βXj

, σXj)}
p

j=1

{(Yi, Gij)}
nY

i=1 {( ̂βYj
, σYj)}

p

j=1

Inverse variance weighted (IVW) estimator: 

•Assume all IVs are valid 

•Assume no measurement error:  

•  

•The IVW estimator: 

̂βXj
= βXj

̂βYj
= θ ⋅ ̂βXj

+ ϵj

̂θ𝙸𝚅𝚆 =
∑p

j=1
̂βXj

̂βYj
/σ2

Yj

∑p
j=1

̂β2
Xj

/σ2
Yj
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Motivation
 Assumptions: SNP j is a valid IV if 

•Relevance:  

•Independence:  

•Exclusion restriction: 

γj ≠ 0

ϕj = 0

αj = 0

Gj X Y
γj θ

αj

Uϕj
βXU βYU

Motivation: break the “winner’s curse” bias induced by the relevance 
assumption

Motivation: build robust and powerful estimators when valid IV 
assumptions are violated

10



Outline

•My research goal and motivation 

•Breaking winner’s curse in two-sample MR 
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Winner’s curse

•To meet relevance assumption , we select SNP j if 

 

•MR analysis relies on the assumption: 

 

•In two sample MR, one often uses the same exposure GWAS to select IVs and estimate , 

thus  follows a truncated normal distribution, leading to a downward bias in  

•Ideally, we hope to use a third independent GWAS data to select IVs (often impractical)

γj ≠ 0
̂βXj

σXj

> λ, λ = Φ−1(1 − α), j = 1,…, p

̂βYj

̂βXj

i.i.d.∼ 𝒩 [
βYj

βXj] ,
σ2

Yj
0

0 σ2
Xj

, j = 1,…, p

βXj

̂βXj
̂θIVW

Gj X Y
γj θ

αj

Uϕj
βXU βYU
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Bias characteristics in simulation studies

• The proportion of SNPs (IVs) near the cutoff: 

 
# of SNPs with p-value lies between 5 × 10−8 and 5 × 10−10

# of SNPs selected

Simulation Design 

• True causal effect:   

• Dimension, sample size:  

• SNP-exposure effect: 

                        

• Measurement errors:  

• Selection cutoff: 

θ = 0.2

p = 200,000, nX = nY = 100,000

βXj
∼ π ⋅ Turncated Normal(0, ε2

x ; (−∞, − a], [a, + ∞)) + (1 − π) ⋅ δ0

ε2
x = 1 × 10−5, a ∈ {0,0.001,0.002,⋯,0.011}

σXj
= 1/ nX, σYj

= 1/ nY

λ = Φ−1(1 −
α
2 ) = 5.45, α = 5 × 10−8

When  increases, more 
SNPs are selected

a
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Bias characteristics in simulation studies

Measurement error bias: ignore estimation 
error on :  βXj

̂βXj
= βXj

Winner’s curse bias: same exposure GWAS 
to select IVs and estimate βXj
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Key idea to correct ‘winner’s curse’ bias

•In three-sample MR: 

 

•Q: How to make  independent with the selection criterion in two-sample MR

̂βXj
⊥⊥

̂β′￼Xj

σ′￼Xj

> λ

on a third GWAS

⟹ 𝔼[ ̂βXj
|

̂β′￼Xj

σ′￼Xj

| > λ] = 𝔼[ ̂βXj
] = βXj

̂βXj

Benefits of this idea
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Rerandomized Inverse Variance Weighted (RIVW) estimator

Step 1. Randomized SNP selection 

•Create a pseudo SNP-risk association for each SNP: 

       Select SNP    

where  

Step 2. Rao-Blackwellization 

•Construct an unbiased initial estimator: 

  satisfies   

•Improve the initial estimator by Rao-Blackwellization  

̂βXj

σXj

+ Zj > λ ⟹ j ⟺ Sj =
̂βXj

σXj

+ Zj − λ > 0

Zj ∼ N(0,η2)

̂βinit
Xj

= ̂βXj
−

ZjσXj

η2
𝔼[ ̂βinit

Xj
|SNP j is selected] = 𝔼[ ̂βinit

Xj ] = βXj

̂βXj,𝚁𝙱 = 𝔼 [ ̂βinit
Xj

| Sj > 0, ̂βXj] = ̂βXj
−

σXj

η

ϕ ( λ
η −

̂βXj

σXjη ) − ϕ (− λ
η −

̂βXj

σXjη )
Φ (− λ

η +
̂βXj

σXjη ) + Φ (− λ
η −

̂βXj

σXjη )

Step 1 comments: 

•SNPs with large  are 

indifferent to the Step 1  

•  is a tuning parameter (our 

estimator is not sensitive to )

̂βXj
/σXj

η = 0.5

η
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Rerandomized Inverse Variance Weighted (RIVW) estimator

Step 1. Randomized SNP selection 

•Create a pseudo SNP-risk association for each SNP: 

       Select SNP    

where  

Step 2. Rao-Blackwellization 

•Construct an unbiased initial estimator: 

  satisfies   

•Improve the initial estimator by Rao-Blackwellization  

̂βXj

σXj

+ Zj > λ ⟹ j ⟺ Sj =
̂βXj

σXj

+ Zj − λ > 0

Zj ∼ N(0,η2)

̂βinit
Xj

= ̂βXj
−

ZjσXj

η2
𝔼[ ̂βinit

Xj
|SNP j is selected] = 𝔼[ ̂βinit

Xj ] = βXj

̂βXj,𝚁𝙱 = 𝔼 [ ̂βinit
Xj

| Sj > 0, ̂βXj] = ̂βXj
−

σXj

η

ϕ ( λ
η −

̂βXj

σXjη ) − ϕ (− λ
η −

̂βXj

σXjη )
Φ (− λ

η +
̂βXj

σXjη ) + Φ (− λ
η −

̂βXj

σXjη )

Step 1 comments: 

•SNPs with large  are 

indifferent to the Step 1  

•  is a tuning parameter (our 

estimator is not sensitive to )

βXj
/σXj

η = 0.5

η
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Rerandomized Inverse Variance Weighted (RIVW) estimator

Step 1 comments: 

•SNPs with large  are 

indifferent to the Step 1 

•  is a tuning parameter (our 

estimator is not sensitive to )

̂βXj
/σXj

η = 0.5

η

Step 2 comments: 

•  

•  is also an unbiased estimator

̂βinit
Xj

= ̂βXj
−

σXj

η2
Zj ⊥

̂βXj

σXj

+ Zj > λ

̂βXj,𝚁𝙱

Step 1. Randomized SNP selection 

•Create a pseudo SNP-risk association for each SNP: 

       Select SNP    

where  

Step 2. Rao-Blackwellization 

•Construct an unbiased initial estimator: 

  satisfies   

•Improve the initial estimator by Rao-Blackwellization  

̂βXj

σXj

+ Zj > λ ⟹ j ⟺ Sj =
̂βXj

σXj

+ Zj − λ > 0

Zj ∼ N(0,η2)

̂βinit
Xj

= ̂βXj
−

σXj

η2 Zj 𝔼[ ̂βinit
Xj

|SNP j is selected] = 𝔼[ ̂βinit
Xj ] = βXj

̂βXj,𝚁𝙱 = 𝔼 [ ̂βinit
Xj

| Sj > 0, ̂βXj] = ̂βXj
−

σXj

η

ϕ ( λ
η −

̂βXj

σXjη ) − ϕ (− λ
η −

̂βXj

σXjη )
Φ (− λ

η +
̂βXj

σXjη ) + Φ (− λ
η −

̂βXj

σXjη )
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Rerandomized Inverse Variance Weighted (RIVW) estimator

Restore the correct center after SNP selection 

•After randomized selection + Rao-Blackwellization:  

  

•Classical two-sample MR:  

 

̂βXj,𝚁𝙱 − βXj
SNP j is selected i.i.d.∼ 𝒢(0, σ2

Xj,𝚁𝙱), j = 1,…, p

̂βXj
− βXj

SNP j is selected i.i.d.∼ 𝒯𝒩(Bias, σ2
Xj

), j = 1,…, p Details on ̂σ2
Xj,𝚁𝙱

RIVW Estimator 

 ̂θ𝚁𝙸𝚅𝚆 =
∑j∈𝒮λ

̂βYj
̂βXj,𝚁𝙱/σ2

Yj

∑j∈𝒮λ
( ̂β2

Xj,𝚁𝙱− ̂σ2
Xj,𝚁𝙱)/σ2

Yj

1 Ye, T., Shao, J., & Kang, H. (2021). Debiased inverse-variance weighted estimator in two-sample summary-data mendelian randomization. The 
Annals of Statistics, 49(4), 2079-2100.

To consider ’s are 
measured with error1

βXj
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Theoretical guarantee

Asymptotic Normality: Under certain regularity conditions, the RIVW estimator converges to 

a standard normal distribution after appropriate scaling 

  

Consistent variance estimation: Under certain regularity conditions, we have 

𝖵− 1
2

𝚁𝙸𝚅𝚆 ( ̂θ𝚁𝙸𝚅𝚆 − θ) → 𝒩(0,1) .

𝖵̂𝚁𝙸𝚅𝚆

𝖵𝚁𝙸𝚅𝚆

p
→ 1.

Assumption Details

•A level  confidence interval can be constructed as:  1 − α

[ ̂θ𝚁𝙸𝚅𝚆 − zα/2 𝖵̂𝚁𝙸𝚅𝚆 , ̂θ𝚁𝙸𝚅𝚆 + zα/2 𝖵̂𝚁𝙸𝚅𝚆 ], where 𝖵̂𝚁𝙸𝚅𝚆 =
∑j∈Sλ ( ̂βYj

̂βXj,𝚁𝙱 − ̂θ𝚁𝙸𝚅𝚆( ̂β2
Xj,𝚁𝙱 − ̂σ2

Xj,𝚁𝙱))
2
/σ4

Yj

(∑j∈Sλ ( ̂β2
Xj,𝚁𝙱 − ̂σ2

Xj,𝚁𝙱)/σ2
Yj)

2
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Simulation results21



Simulation results22

Cut-of Monte 
SD

SD Coverage Power # SNPs

Two-
sample 

MR

5.45 0.167 0.044 0.044 0.884 0.95 10

Three-
sample 

MR

5.45 0.195 0.053 0.052 0.953 0.96 10

dIVW 0 0.222 0.217 0.213 0.971 0.12 ALL

RIVW 4.06 0.201 0.039 0.040 0.951 1.00 99

̂β

Simulation Settings (when proportion of valid IV is low): 

π = 0.002, ε2
x = 5 × 10−5, a = 0.002

γ ∼ π ⋅ Turncated Normal(0, ε2
x ; (−∞, − a], [a, + ∞)) + (1 − π) ⋅ δ0

More Simulation results



Real data results: same-trait analysis

1 Locke, Adam E., et al. "Genetic studies of body mass index yield new insights for obesity biology." Nature 518.7538 (2015): 197-206. 
2 Hemani, Gibran, et al. "The MR-Base platform supports systematic causal inference across the human phenome." elife 7 (2018): e34408.

Threshold Effect size SE 95% CI # IVs

RIVW 1.005 0.022 [0.962, 1.048] 920

IVW 0.833 0.014 [0.806, 0.860] 404

IVW 0.857 0.016 [0.826, 0.888] 277

IVW 1.014 0.034 [0.947, 1.081] 25

5 × 10−5

5 × 10−8

5 × 10−10

5 × 10−30 Details

BMI-BMI analysis 

•The causal effect size equals 1 

•Exposure GWAS: BMI  GWAS  data  from  the  UK  Biobank  (N = 461,460, ID: ukb-b-19953) 

•Outcome GWAS: BMI  GWAS  data  from  the GIANT consortium (N = 234,069, ID: ieu-a-2)1 

•All data are downloaded from the IEU GWAS website2
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For a valid IV j: 

•  and  

For an invalid IV j: 

•  and (or) 

ϕj = 0 αj = 0

ϕj ≠ 0 αj ≠ 0 rj ≠ 0

rj = 0

Two Sample MR

γp

Instrumental Variables

θ⋮

Gp

SNP

γ1
G1

X Y
Exposure Outcome

SNP
U

Unmeasured confounderϕ1

αp

βXU βYU

Structure equation model: 
βXj

= γj + βXU ⋅ ϕj

βYj
= βYj,𝙼 + βYj,𝙳 = θ ⋅ βXj

+ (αj + βYU ⋅ ϕj) ≜ θ ⋅ βXj
+ rj

Q: How to model ? rj

25

rj = αj + ϕj ⋅ βYU

βYj
= θ ⋅ βXj

+ rj



Causal Analysis with Rerandomization Estimator (CARE)

 

• In IVW, we assume all IVs are valid ( ) and ignore the measurement error (  is known) 

                  

• Bias-corrected least squares function: 

̂βYj⏟
response

= θ
⏟

target
parameter

⋅ βXj⏟
true

covariate

+ rj
⏟

unknown
parameter

+ νj
⏟

noise

, ̂βXj,RB = βXj
+ uj,

covariates are
measured with error

j ∈ 𝒮λ

rj = 0 βXj

̂βYj
= θ ⋅ βXj

+ vj, l(θ) =
1
2 ∑

j∈𝒮λ

( ̂βYj
− θ ⋅ βXj)

2

σ2
Yj

l(θ, {rj}j∈𝒮λ) = ∑
j∈𝒮λ

lj(θ, {rj}j∈𝒮λ) ≜
1
2 ∑

j∈𝒮λ

( ̂βYj
− θ ⋅ ̂βXj,RB − rj)

2

σ2
Yj

−
1
2 ∑

j∈𝒮λ

θ2 ⋅ ̂σ2
Xj,𝚁𝙱

σ2
Yj

Derivation details

Bias correction term 
for measurement error
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Causal Analysis with Rerandomization Estimator (CARE)

• Bias-corrected least squares function: 

 

• When all IVs are valid, the solution equals that of the RIVW estimator 

• Invalid IVs may be selected due to widespread pleiotropic effects 

• As invalid IVs provide biased estimates, we only use valid IVs to estimate : 

l(θ, {rj}j∈𝒮λ) = ∑
j∈𝒮λ

lj(θ, {rj}j∈𝒮λ) ≜
1
2 ∑

j∈𝒮λ

( ̂βYj
− θ ⋅ ̂βXj,RB − rj)

2

σ2
Yj

−
1
2 ∑

j∈𝒮λ

θ2 ⋅ ̂σ2
Xj,𝚁𝙱

σ2
Yj

θ

min
θ∈ℝ,rj∈ℝ

̂l(θ, {rj}j∈𝒮λ) ≜
1
2 ∑

j∈𝒮λ

( ̂βYj
− θ ⋅ ̂βXj,RB − rj)

2
− θ2 ⋅ ̂σ2

Xj,𝚁𝙱

σ2
Yj

I(rj = 0) subject to  ∑
j∈𝒮λ

I(rj ≠ 0) = m
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Causal Analysis with Rerandomization Estimator (CARE)

• The objective function is 

 

• For a fixed , obtain an estimated valid IV set  by a revised coordinate descent algorithm1 

• Select the optimal  by the BIC:  

• Obtain the estimator  and its standard deviation by the RIVW

min
θ∈ℝ,rj∈ℝ

̂l(θ, {rj}j∈𝒮λ) ≜
1
2 ∑

j∈𝒮λ

( ̂βYj
− θ ⋅ ̂βXj,RB − rj)

2
− θ2 ⋅ ̂σ2

Xj,𝚁𝙱

σ2
Yj

I(rj = 0) subject to  ∑
j∈𝒮λ

I(rj ≠ 0) = m

m M̂

m −2 ̂l(θ, {rj}j∈𝒮λ) + log( min(nX, nY)) ⋅ m

̂θ

1 Xue, H., Shen, X., & Pan, W. (2021). Constrained maximum likelihood-based Mendelian randomization robust to both correlated and 
uncorrelated pleiotropic effects. The American Journal of Human Genetics, 108(7), 1251-1269.

Challenges: How to conduct inference after model selection? 

Perfect model selection is hard to achieve due to weak signals

Algorithm Details
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Causal Analysis with Rerandomization Estimator (CARE)
• Bagging1 (bootstrap smoothing) to reduce variability and eliminate discontinuities in model 

selection: treat each IV as a subject in bagging 

 

where  follows a multinomial distribution with equal event probabilities 

• Smoothing the estimator by averaging over the  (say, 2,000) bootstrap replications: 

, where  is calculated by the previous procedure 

• The corresponding variance can be estimated by a conservative estimator: 

min
θ∈ℝ,rj∈ℝ

̂l*b (θ, {rj}j∈𝒮λ) ≜
1
2 ∑

j∈𝒮λ

w*bj

( ̂βYj
− θ ⋅ ̂βXj,RB − rj)

2
− θ2 ⋅ ̂σ2

Xj,𝚁𝙱

σ2
Yj

I(rj = 0) subject to  ∑
j∈𝒮λ

I(rj ≠ 0) = m,

{w*bj}j∈𝒮λ

B

θ̃ = 1
B ∑B

b=1
̂θb

̂θb

∑B
b=1 ( ̂θb − θ̃)2

B − 1

29

1 Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.



Two-sample MR with overlapped samples

• Previously, we assume no overlapped samples between exposure GWAS and outcome GWAS: 

 

• Samples may be overlapped due to the current trend of collecting biobank data: 

 

•  can be estimated by LD score regression1

̂βYj

̂βXj

i.i.d.∼ 𝒩 [
βYj

βXj] ,
σ2

Yj
0

0 σ2
Xj

, j = 1,…, p

̂βYj

̂βXj

i.i.d.∼ 𝒩 [
βYj

βXj] ,
σ2

Yj
ρσXj

σYj

ρσXj
σYj

σ2
Xj

, j = 1,…, p

ρ

1 Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P. R., ... & Neale, B. M. (2015). An atlas of genetic correlations across 
human diseases and traits. Nature Genetics, 47(11), 1236-1241.
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CARE with overlapped samples

• Using the same idea, we only need to revise the objective function into: 

 

• The other steps follow and remain the same

l̃(θ, {rj}j∈𝒮λ) ≜
1
2 ∑

j∈𝒮λ

( ̂βYj
− θ ⋅ ̂βXj,RB − rj)

2

σ2
Yj

−
1
2 ∑

j∈𝒮λ

θ2 ⋅ ̂σ2
Xj,𝚁𝙱

σ2
Yj

bias correction 
for the measurement error

+ θ ∑
j∈𝒮λ

ρ ⋅ ̂σXj,RB
σYj

bias correcction
for sample overlap

31



Computational time in CARE32

Computational time 

•The algorithm is written in C++ through RcppArmadillo and is highly optimized 

•For a simulation (over 12,000 replications) with an average of 328 IVs, the computational 
time for CARE (with 2,000 bootstraps) is 13.3 seconds by a single core in FSU Research 
Computing Center



Simulations
Simulation Design 

•Dimension, sample size:  

•Setups: 

Proportion of IVs: ; —valid IVs; —invalid IVs; 

; : point mass at zero 

 

 

•Measurement errors:  

•Selection cutoff:  for benchmark methods and  for the proposed method CARE 

•1,000 replications for type 1 error rates, 500 replications for power

p = 200,000, nX = nY = 500,000

π1 + π2 = 0.02 π1 π2

βXU = βYU = 0.3 δ0

σ2
x = σ2

y = σ2
u = 1 × 10−5

γj
αj

ϕj

∼ π1

N(0,σ2
x )

δ0

δ0

+ 0.3π2

N(0,σ2
x )

N(0,σ2
y ) ∉ [−0.01,0]

N(0,σ2
u)

+ 0.7π2

N(0,σ2
x )

N(0,σ2
y )

δ0

+ π3

δ0

N(0,σ2
y )

δ0

+ π4

δ0

δ0

δ0

σXj
= 1/ nX, σYj

= 1/ nY

α = 5 × 10−8 α = 5 × 10−5

Gj X Y
γj θ

αj

Uϕj
βXU βYU

Directional pleiotropy Balanced horizontal pleiotropy

Valid IVs
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Simulation results: 30% invalid IVs
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Simulation results: 50% invalid IVs
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Simulation results: 70% invalid IVs

 

36



1 Sanderson, E., Richardson, T. G., Hemani, G., & Smith, G. D. (2021). The use of negative control outcomes in Mendelian Randomisation to detect 
potential population stratification or selection bias. International Journal of Epidemiology, 50(4), 1350–1361

Real data analysis: Negative control outcome analysis 

Evaluate Type 1 error rates with real datasets 

• Exposures: 124 risk factors (BMI, etc.) and diseases (Alzheimer’s, etc.) 

• Negative control outcomes1: 

Natural hair color before greying (black, blonde, dark brown, light brown, and red) is largely 
determined at birth and is not expected to be associated with exposures 

Based on the UK Biobank study 

• We do not expect any causal effect of exposures on negative control outcomes ( ) 

• All data were downloaded from the IEU OpenGWAS Project

θ = 0
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QQ plots for CARE
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QQ plots for benchmark methods
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QQ plots for benchmark methods
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Real data analysis: Risk factors & COVID-19

Identify likely causal risk factors/diseases for COVID-19 severity 

• Exposures: 124 risk factors/diseases (BMI, Childhood obesity, birth length, Total 
cholesterol, waist circumference, overweight, etc.) 

• Outcome: COVID-19 severity (B2, Hospitalized COVID-19 vs population) 

GWAS data from COVID19hg release 6, European ancestry1 

17,992 cases and 1,810,493 controls 

• Use C2 (COVID-19 vs population) for partial validation 

87,870 cases and 2,210,804 controls

1 COVID-19 Host Genetics Initiative. (2021). Mapping the human genetic architecture of COVID-19. Nature.
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Number of significant risk factors/diseases

Figure: Suggestive threshold: p < 0.05 
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Figure: FDR p < 0.05 
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Significant risk factors (FDR p < 0.05)

Risk factors for COVID-19 severity 
(according to CDC): 

•Body mass index 

•Obesity class 1 (BMI of 30 to 35) 

•Depression 

•Mental disease

B2: Hospitalized covid vs. population C2: Covid vs. population

Body mass index

Waist circumference

Obesity class 1

Experiencing mood swings

Depressed affect

CARE

cML−DP

IVW

RAPS

Weighted−Median

p > 0.05

0.0004 < p < 0.05

p < 0.0004

−

+
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Summary

γp

Instrumental Variables

θ⋮

Gp

SNP

γ1
G1

X Y
Exposure Outcome

SNP
U

Unmeasured confounderϕ1

αp

βXU βYU

Assumptions: SNP j is a valid IV if 

• Relevance:  

• Independence:  

• Exclusion restriction: 

γj ≠ 0

ϕj = 0

αj = 0

̂βXj
= lm(X ∼ Gj)

̂βYj
= lm(Y ∼ Gj)

Genetic association 
(GWAS)

Contribution: A new rerandomization 
procedure to break ‘winner’s curse’ bias in 
two sample MR

Contribution: A new method (CARE) that 
removes ‘winner’s curse’ and measurement 
error bias and is robust to pleiotropy and 
sample overlap
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Outline

•My research goal and motivation 

•Breaking winner’s curse in two-sample MR 

•Correcting pleiotropy in two-sample MR 

•Other works and future directions
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Identify likely causal biomarkers

1 Gusev, Alexander, et al. "Integrative approaches for large-scale transcriptome-wide association studies." Nature Genetics 48.3 (2016): 245-252.
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Figure: Workflow of TWAS1



Identify likely causal biomarkers

 Zhang, Z. , Bae, Y. , Bradley, J., Wu, L, Wu, C.* (2021+). SUMMIT: An integrative approach for better transcriptomic data imputation improves 
causal gene identification. Nature Communications. Under review. Poster talk and Reviewers’ Choice at ASHG 2021.

† †
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Figure: Workflow of SUMMIT

31,684 blood
samples
cis-SNPs

eQTLGen Consortium

GTEx Portal

Gene expression
reference

LD reference (!)

1000 Genomes Project

Testing associations

cis-eQTL
effect sizes

(")

Individual-level GWAS data

Phenotype  ∼ Imputed
expression

Imputing gene expression

Tuning &
validation

Constructing

Summary-level GWAS data

$∗ ≈ "'$
"'!"

where $ is the SNP-trait standardized effect.



Identify likely causal biomarkers

Zhang, Z. , Bae, Y. , Bradley, J., Wu, L, Wu, C.* (2021+). SUMMIT: An integrative approach for better transcriptomic data imputation improves 
causal gene identification. Nature Communications. Under review. Poster talk and Reviewers’ Choice at ASHG 2021.

† †
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Identify likely causal biomarkers

R01: Uncovering causal protein markers to improve prostate cancer etiology understanding and risk prediction in Africans and Europeans (PI: Lang 
Wu and Chong Wu); Put forward for exception funding by PO  

49

Ideas: 
•TWAS-type methods can be viewed as one type of MR with 

correlated instrumental variables. Make methods more robust to 

the violation of IV assumptions 

•Consider both cis- and trans-acting elements 

•Consider other types of biomarkers (such as proteins) and other 

ancestries 



Enhance risk prediction

•Polygenic risk score (PRS): a risk prediction method by integrating genetic 
information from all genetic variants 

•There are many debates regarding whether PRS is really useful in a clinical setting 

•We evaluate this for coronary artery disease1 

Ensemble PRS: combine multiple GWAS datasets and several PRS methods 

Evaluate if adding ensemble PRS to PCE can improve the risk prediction using 
the independent White British subjects in UK Biobank 

Pooled cohort equation (PCE) is a guideline recommended clinical risk score for 
coronary artery disease

1 King, A.  , Wu, L., Deng, HW., & Wu, C.* (2021+). Polygenic risk score improves the accuracy of a clinical risk score for coronary artery 
disease. Submitted.

†
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Enhance risk prediction

For incident CAD cases, 14.2% of 
individuals correctly reclassified to the 
higher-risk category and 2.6% incorrectly 
reclassified to the lower-risk category
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Enhance risk prediction

R01: Uncovering causal protein markers to improve prostate cancer etiology understanding and risk prediction in Africans and Europeans (PI: Lang 
Wu and Chong Wu); Put forward for potential funding by PO  

52

Cross-ancestry PRS:  

•Poor performance mainly because minor allele frequency and linkage disequilibrium 
are different across ancestry 

•Causal variants are largely shared across ancestry 

•We hypothesize that causal biomarkers are also largely shared across ancestry, and 
incorporating likely causal biomarkers may be helpful



Software and pipeline development
•Online servers (R Shiny) for searching our real 

data results 

•R packages that are available in both GitHub 
and CRAN 

•Tutorials for distributing our software and pipeline
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Future directions summary
Develop new methods/theory/software to  

•Identify likely causal risk factors and biomarkers 

•Enhance risk prediction 

Extend to other types of big and messy data 

•Deep learning
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Details on σ2
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Details on assumption
Assumption 1 (Measurement error model)	  

(i) For any , the pairs,  and  are mutually independent 

(ii) For each ,  

	 	  

For some ,  are uniformly bounded and bounded away from zero 

Assumption 2 (Instrument selection): The cutoff value satisfies  
Assumption 3 (No dominant instrument): The true instrument effect satisfies  

 

When Assumptions 1–3 hold,  and , where , the 

Theorem holds

j ≠ j′￼ ( ̂βYj
, ̂βXj

) ( ̂βY′￼j
, ̂βX′￼j

)

j

̂βYj

̂βXj

∼ 𝒩 [
θβXj

βXj] ,
σ2

Yj
0

0 σ2
Xj

ν → 0 {σYj
/ν, σXj

/ν : 1 ≤ j ≤ p}

λ → ∞

maxj∈Sλ
γ2

j /(∑j∈Sλ
γ2

j ) p
→ 0

pλ = |Sλ | → ∞ κλ/λ2 → ∞ κλ = 1
pλ

∑j∈𝒮λ
(γj /σXj

)2

Back to main slides

59



RIVW Simulation results
Setting (balanced horizontal pleiotropy): 

π1 = 0.01, ε2
x = 5 × 10−5, ρ = 0.3

(γj
αj) ∼ π1ρ (N(0,ε2

x )
δ0 ) + π1(1 − ρ)(N(0,ε2

x )
N(0,ε2

x )) + π2 (
δ0

N(0,ε2
x )) + π3 (δ0

δ0)

Back to main slides
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RIVW Simulation results

Back to main slides
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Setting (balanced horizontal pleiotropy): 

π1 = 0.01, ε2
x = 5 × 10−5, ρ = 0.3

(γj
αj) ∼ π1ρ (N(0,ε2

x )
δ0 ) + π1(1 − ρ)(N(0,ε2

x )
N(0,ε2
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Details on independent IV selections

•In MR studies, we often require independent IVs 

•To achieve this, one often applies the clumping (select ones with the smallest 

p values in a region) to select independent IVs: really hard to deal with the 

 

•In our RIVW, we propose a modified clumping (select ones with the smallest 

estimated variance in a region) to select independent IVs 

Benefits: our method and theory can go through with this procedure 

Disadvantages: lose power compared to the original clumping procedure

max
j∈𝒮

̂βXj

Back to main slides
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The benefits of rerandomization Back to main slides

Conditional on the selection,  follows a truncated normal distribution and we can reduce bias by1 

 

Simulations:  

•Dimension, sample size:  

•Threshold:  

•  

• Measurement errors:  

Simulation results:  

Two-sample: 1.26; Three-sample: -0.020; Bias-reduced: -0.658; Rerandomization: -0.027

̂βXj

̂βXj
= E( ̂βXj

| ̂βXj
/σXj

| > λ)

p = 200,000, nX = 100,000
λ = Φ−1(1 −

α
2 ) = 4.06, α = 5 × 10−5

βXj
∼ π ⋅ N(0.01, ε2

x ) + (1 − π) ⋅ δ0, ε2
x = 1 × 10−7, π = 0.02

σXj
= 1/ nX

Standardized Bias: (β̃Xj
− βXj

)/σXj

1 Zhong, H., & Prentice, R. L. (2008). Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. 
Biostatistics, 9(4), 621-634.
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Details on bias-corrected least squares function

When we have true , the least squares function is:  
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Details on coordinate descent algorithm
•We start with an initial guess of , denoted as , which can be either 0 or generated 

from a distribution:  

•At iteration , we update  as follows. We order decreasingly 

  

Then we set  for the largest  component  and 

 for  

•We next update  by RIVW formula 

• We iterate the above two steps to update  and  coordinately until the difference 

between  and  is small

θ θ(0)

θ(0) ∼ Uniform (min1≤ j≤M
̂βYj / ̂βXj, max1≤ j≤M

̂βYj / ̂βXj)
k + 1 rj

( ̂βYj
− θ ⋅ ̂βXj,RB − rj)

2
− θ2 ⋅ σ2

Xj,RB
σ2

Yj

, j = 1,2,…, M .

r(k+1)
j = ̂βYj − θ(k) ⋅ ̂β(k)

Xj,RB K j = 1,…, K

r(k+1)
j = 0 j = K + 1,…, M

θ

rj θ

θ(k+1) θ(k)
Back to main slides
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Discussion

•Applied MR studies require domain expertise; valid IV selections for MR analyses involve 

many steps (e.g., removing IVs with potential pleiotropic effect, etc.);  

•Researchers report IVW estimators as their main results and use sensitive analyses and 

robust MR methods to confirm their findings 

•Our new method can serve as one type of robust MR method, which considers winner’s 

curse bias, measurement errors in IVs, and relax valid IV assumptions. 
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