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Outline

s My research goal and motivation

m Breaking winner's curse in two-sample MR
m Correcting pleiotropy in two-sample MR

m Other works and future directions



Research goal

My long-term research goal is to develop new methods, theories, and software to:
m identify likely causal risk factors and biomarkers for a complex disease (prostate
cancer, Alzheimer's disease, etc.)

m enhance risk prediction to advance precision medicine

Research Interests: causal inference (Mendelian randomization), machine learning,

statistical genetics (polygenic risk score, integrative analysis, TWAS, PWAS)

Data we work on: UK Biobank (genotype, risk factors, & disease status), GTEx
(splicing, gene expression, & genotype), ROS/MAP (protein & genotype), GWAS

summary data, functional annotations, DNA methylation



Causal inference in observational data

Does X (risk factor) cause Y (complex disease)?

s Example: Does smoking cause lung cancer?

Random i
: .o : ] Intervention
m Randomized clinical trial assignment . .
ﬁ
¢ Gold standard ./

¢ Randomization balances participant
Control

characteristics between the groups —_—

m Challenges: randomized clinical trial would be

both not feasible and unethical



Causal inference in observational data

Example: identify causal biomarkers for a complex disease

Why:
m understand the etiology

m drug development

Challenges:

m the number of biomarkers is large

m biomarkers are correlated

Goal:
identify likely causal biomarkers by

This figure is downloaded from Google Image

using observational data



Mendelian randomization

. Intervention .

Randomization balances participant
r \ Control
characteristics between the groups .

Random

Randomized clinical trial assignment
Gold standard

Genome: genetic information My chromosome ﬁ

encoded in 23 chromosome pairs
SNP

¢ variation in a single base pair

¢ inherited randomly and fixed at Your chromosome

conception

This figure is downloaded from Google Image



Mendelian randomization

Random

Randomized clinical trial assignment

Gold standard
Randomization balances participant \
characteristics between the groups .

Allele C

Hypothetical example
Inherited

randomly

Allele A: not smoking

Allele C: smoking

Not associated with unmeasured
confounding factors (e.g., drinking) \
No direct effect on the outcome

(e.g., lung cancer) Allele A

Intervention

S

Control

—_—

Intervention

.

Control

—_—



Mendelian randomization

¢, Unmeasured confounder Structure equation model:
ﬁXj =Y T ¢j - Pxu

ﬁIG:ﬁY],,M+ﬂyj,D=9'ﬁxj+(aj+¢j'ﬁYU)ée’ﬁxj""}'

Instrumental Variables

SNP j is a valid instrumental variable (1V) if

= Relevance: y; # 0

¥ Outcome
‘ s Independence: ¢; =0

a Exclusion restriction: a; = 0

Genetic association For a valid |V SNP ]
(GWAS) By =Imy ~ G) B
""""" J"""""""""'> ﬁX]_}{]

,BY].=‘9',BXJ.



Two-sample summary-data MR

Two-sample MR setup: Inverse variance weighted (IVW) estimator:

Original data | Summary data = Assume all [Vs are valid

Ny A P - 2 —_—
Exposure GWAS {<X§<’G§)}i=1 {(ﬁX,,aX,)}: s Assume no measurement error: ,BXj — ,BXj

m | he IVW estimator:

Outcome GWAS {(Yz G;) }: {(ﬂAY,» "YJ-)}

Strengths of two-sample MR:

P B A (A2
m Increase the power A J-zlﬁxjﬁyj/ﬁyj
Oy =

. A
m Expand the scope of MR studies j—1ﬁ)2(j/012/j
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Motivation

Assumptions: SNP j is a valid IV if

= Relevance: y; = ()

s Independence: ¢, =0

a Exclusion restriction: a; = 0

Motivation: break the “winner’'s curse” bias induced by the relevance

assumption

Motivation: build robust and powerful estimators when valid 1V

assumptions are violated
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Outline

m Breaking winner’'s curse in two-sample MR
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Winner's curse

= To meet relevance assumption y; # 0, we select SNP j if

>4 A=0Y1-q), j=1,.,p

s MR analysis relies on the assumption:

) 2
ST N Ll I A | P
ﬁXj ﬁXj 06)%

m In two sample MR, one often uses the same exposure GWAS to select IVs and estimate ﬁXj,

thus ﬁAXj follows a truncated normal distribution, leading to a downward bias in 6A’|VW

m |deally, we hope to use a third independent GWAS data to select IVs (often impractical)



Bias characteristics in simulation studies

Simulation Design

m |rue causal effect: d = (0.2

m Dimension, sample size: p = 200,000, ny = ny, = 100,000 When a increases more

s SNP-exposure effect: ¥  SNPs are selected

“‘
.

e2=1x%x107, |a € {0,0.001,0.002,---,0.011}

s Measurement errors: oy = 1/4/ny, oy = 1/, /ny
J J

. -1 * —8
. Selection cutoff: 4 = ® (1 — 3) =545, a=5X%x10

m The proportion of SNPs (IVs) near the cutoff:
# of SNPs with p-value lies between 5 X 107° and 5 x 10719
# of SNPs selected
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Bias characteristics in simulation studies

Winner's curse bias proportion

0.4- Winner’s curse bias: same exposure GWAS
.
S .+" to select IVs and estimate ﬂXj
5
Q. ’
2 o’
o 0.2 L’
7))
S
11]
1 Measurement error bias: ignore estimation
------ .} A
0.0- error on fy: Py = Py
J J J
30 40 50 60 70 80 90

IV % around the cut-off value

Method VW Three-sample VW
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Key idea to correct ‘winner's curse’ bias

m In three-sample MR:

A B N
,Bin — > A — _ﬁxj |— | > 41 =—[,B)(j]=ﬁ)(j
Oy Oy J

J J

on a third GWAS

s Q: How to make ,BAX independent with the selection criterion in two-sample MR
J

Benefits of this idea
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Rerandomized Inverse Variance Weighted (RIVW) estimator

Step 1. Randomized SNP selection Step 1 comments:

m Create a pseudo SNP-risk association for each SNP: SNPs with large ’B\ /6. are
. %0

Px. | Px
~-+Z| >4 = Select SNPj <= §;= — - Zi| —4>0 indifferent to the Step 1
Oy X.

where Z; ~ N(0,1?) m 7 = 0.5 is a tuning parameter (our

Step 2. Rao-Blackwellization estimator is not sensitive to #)

m Construct an unbiased initial estimator:

ZjG)(.

1n1t :BX 2] satisfies [ﬂlmt|SNPj i selected] [ pinit] _
4l

m Improve the initial estimator by Rao-Blackwellization

ﬁXJ.,RB — [E 'Blnlt‘ S] > O,IBAX]] — ﬂX
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Rerandomized Inverse Variance Weighted (RIVW) estimator

S The robustness of the eta selection (A) The robustness of the eta selection (B)
0.050-
0.006 -
0.025-
@ | r
W S O 0.005
= =
S8 | | | | S
O 0.0007 #H—————fmmmm i s
o 9
I ©
s £ 0.004-
- a
LLl
-0.025-
I
0.003-
-0.050-
p 30 40 50 60 70 80 30 40 50 60 70 80
Weak IV % around the cut-off value Weak IV % around the cut-off value
eta 04 4+ 05 = 06 -+ 0.8 1
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Step 1. Randomized SNP selection

m Create a pseudo SNP-risk association for each SNP:

> A

where Z; ~ N(0,1?)

Step 2. Rao-Blackwellization

—> Select SNPj < § =

m Construct an unbiased initia

Oy

jinit ,BX——Z satisfies [

"

estimator:

,B““t\SNPj is selected] =

m Improve the initial estimator by Rao-Blackwellization

,BAXJ.,RB = [ ﬁlmt‘ 5; > O,ﬁAXj] = Px

Z.| —1>0

= [ ﬁ;glt] — ﬁXJ

¢ A ﬁAXj _ ¢ A ﬂAXj
0)9 n O-Xjﬂ n GX]]/]

o cp( L ﬁAX">+q>< ’ ﬁAX”)
H GXJ-’? H UXJ-’?

Rerandomized Inverse Variance Weighted (RIVW) estimator

Step 1 comments:

a SNPs with large ,BAXj/axj are

indifferent to the Step 1
m 7 = 0.5 is a tuning parameter (our

estimator is not sensitive to #)

Step 2 comments:

% | Px
1n1t ﬁX Z] J_ | Z] > /1
n* Ox

n ,BXJ,,RB is also an unbiased estimator
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Rerandomized Inverse Variance Weighted (RIVW) estimator

Restore the correct center after SNP selection

m After randomized selection + Rao-Blackwellization:

,BAXJ,,RB —,BXj SNP j is selected i G0, oi,RB), j=1,...,p

m Classical two-sample MR:

A .i.d.
IBX]._,BX]. .0

SNP j is selected "~ I /4 (Bias, 6)2(.), j=1,....p

. A
Details on GXJ_,RB

RIVW Estimator

E,. 3y By onl G2 _ |
0 JES ’BYJ’BXJ’RB b To consider fy's are
RIVW — A f
2 A2 2 ' 1
z'jecsg (:BXJ-,RB GXJ-,RB)/GY. measured with error

o e e E— e

1 Ye, ,-~«-- J.Kag, H (2021). Debiased inverse-variance weighted estimator in two-sample summary-data mendelian randomization. The
Annals of Statistics, 49(4), 2079-2100.
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Theoretical guarantee

Asymptotic Normality: Under certain regularity conditions, the RIVW estimator converges to

a standard normal distribution after appropriate scaling

1

Consistent variance estimation: Under certain regularity conditions, we have

VRIVW P
> 1.

VRIVW Assumption Details

m A level 1 — a confidence interval can be constructed as:

2
% 22 A2 4
YPX.RB — QRIVW(:BXJ-,RB — OX.RB > / Oy,

[ Or1vy — Za/z\/ Vet > Orove + Za/z\/ VaIvw ]» where Vpryy = :
A2 - A2 2
( ZJESA <'BX"RB UXJ’RB> /UYJ )
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Simulation results

0.4-
c
O
o
Q.
o
o 0.2
(7))
©
m
0.0 A--------- Ao Y VO T 7 — V W— Al h- A A A
30 40 50 60 70 80 90

IV % around the cut-off value

Method VW -4 RIVW Three-sample VW
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Simulation results

Simulation Settings (when proportion of valid IV is low):

7 =0.002, e2=5x%x 107, a = 0.002
y ~ 1 - Turncated Normal((), 8%; (—o0, —al, la, + oo)) + (1 —m) - o

Cut-off 'B\ Monte SD Coverage Power # SNPs
SD
Two-
5.45 0.167 0.044 0.044 0.884 0.95 10
sample
Three-
5.45 0.195 0.053 0.052 0.953 0.96 10
sample
dIVW O 0.222 0.217 0.213 0.971 0.12 ALL
RIVW 4.06 0.201 0.039 0.040 0.951 1.00 99

More Simulation results
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Real data results: same-trait analysis

BMI-BMI analysis

m [ he causal effect size equals 1

m Exposure GWAS: BMI GWAS data from the UK Biobank (N = 461,460, ID: ukb-b-19953)
s Outcome GWAS: BMI GWAS data from the GIANT consortium (N = 234,069, ID: ieu-a-2)1
m All data are downloaded from the IEU GWAS website?

; Threshold Effect size SE 95% Cl # Vs
RIVW 5% 107 1.005 0.022 [0.962, 1.048] 920
IVW 5% 1078 0.833 0.014 [0.806, 0.860] 404
IVW 5% 1010 0.857 0.016 [0.826, 0.888] 277
IVW 5% 10739 1.014 0.034 [0.947, 1.081] 25 Details

. — = . e e e e S e
. = .

1 Locke, Adam E., et al. "Genetic studies of body mass index yield new insights for obesity biology." Nature 518.7538 (2015): 197-206.

2 Hemani, Gibran, et al. "The MR-Base platform supports systematic causal inference across the human phenome." elife 7 (2018): €34408.
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Outline

m Correcting pleiotropy in two-sample MR
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Instrumental Variables

Two Sample MR

Unmeasured confounder

Structure equation model:
ﬂxj =Yt Pxu - ij

ﬁ)g.:ﬁyj,M‘l‘ﬁYj,D=‘9'IBXJ-+(aj+ﬂYU°¢j)ég"ﬁxj_l_’?

For a valid IV j:
s pi=0and ¢;=0—"> 1,=0
For an invalid 1V j:

m ¢ #0and (or) @, # 0 ——> 1, #0

Q: How to model rj?
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Causal Analysis with Rerandomization Estimator (CARE)

V target - - : — J
response rameter true unknown  noise covariates are
P covariate  parameter measured with error

n In IVW, we assume all IVs are valid (r;, = 0) and ignore the measurement error (fy is known)
J

(A =0-8)

A 1
By =0-Py+v, 1(0)== )

m Bias-corrected least squares function:

N
(0. {r}}jes,) = Z (0 {rljes,) = 2

JES

Derivation details
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Causal Analysis with Rerandomization Estimator (CARE)

m Bias-corrected least squares function:

(0: {rhes,) = 2, 4(0: (r)es) %Z

JES, JES,

) ) 2
(ﬁyj —0-PxRB ~ ’fi) < 0 0)2( RB

2 2
ayj 2 o

JES I

s When all |Vs are valid, the solution equals that of the RIVW estimator

m Invalid Vs may be selected due to widespread pleiotropic effects

m As invalid IVs provide biased estimates, we only use valid Vs to estimate 6:

A . 2
<ﬁyj —0- ﬁXj,RB — ’3) -6 0)2( RB
[(r; =0) subject to Z I(r; #0) =
0% / J
JES, b jES,

|
min l(@ {r}]ecgﬂ) 2 _ Z

OeR,r,ER 2
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Causal Analysis with Rerandomization Estimator (CARE)

m [ he objective function is

A A 2
(ﬁyj —0- :BXJ.,RB — ’f;) - 6° U)Z(J-,RB
[(r.=0) subject to Z [(r;#0)=m
52 J J
JjES, I JES)

R 1
min 1(0.(5),c;) 22 Y

0eR,r€R 2

s For a fixed m, obtain an estimated valid IV set M by a revised coordinate descent algorithm!

m Select the optimal m by the BIC: —2?(.9, {rj}jecgﬂ) -+ log( min(7ny, nY)) - m

= Obtain the estimator 6 and its standard deviation by the RIVW Algorithm Details

Challenges: How to conduct inference after model selection?

® Perfect model selection is hard to achieve due to weak signals

Al'Xue,' & , W. (2021). Constrained maximum likelihood-based Mendelian randomization robust to both correlated and
uncorrelated pleiotropic effects. The American Journal of Human Genetics, 108(7), 1251-1269.
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Causal Analysis with Rerandomization Estimator (CARE)

m Bagging! (bootstrap smoothing) to reduce variability and eliminate discontinuities in model
selection: treat each IV as a subject in bagging
5 5 ST
(By=0-hyre=1) =6

" I(r; = 0) subject to Z I(r; # 0) = m,
jES, ¥ JES)

VN 1
- A
Jin 50 Ankes) 2.5 2w

where {wlj;. jes, follows a multinomial distribution with equal event probabilities

m Smoothing the estimator by averaging over the B (say, 2,000) bootstrap replications:

~ 1B ) A .
0 = Ezbzl 0, where @, is calculated by the previous procedure

m [ he corresponding variance can be estimated by a conservative estimator:
B A _ D2
B—-1

 ———e e o ot e
e e ==

1 Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
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Two-sample MR with overlapped samples

m Previously, we assume no overlapped samples between exposure GWAS and outcome GWAS:

) 2
S XA Ll I A | P
ﬁX] ﬁX] b 00)2(11] b4 . 9

m Samples may be overlapped due to the current trend of collecting biobank data:

N 2

Pv | iid Py, Oy, POxOy, |

. ~J /’/ ﬁ . ) - ] — 1,...,p
Px x| |Pox% %

m p can be estimated by LD score regressionl

? 1'ulikylvn, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P. R, ... & Neale, B. M. (2015). An atlas of genetic correlations across
human diseases and traits. Nature Genetics, 47(11), 1236-1241.
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CARE with overlapped samples

m Using the same idea, we only need to revise the objective function into:

VaN VaN 2
_ 0. - 2 A2 A
- 1 ('BY,- 0 Px RB ’?) 1 07 - O rp P Ox.RB
[(0,{r}ics) &= — + 0
J1I€S; 2 o2 2 o2 o
jes, ¥ jes, ¥ jes, I
bias correction bias correcction

for the measurement error for sample overlap

m [ he other steps follow and remain the same
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Computational time in CARE

Computational time
m [ he algorithm is written in C4+—+ through RcppArmadillo and is highly optimized

m For a simulation (over 12,000 replications) with an average of 328 IVs, the computational
time for CARE (with 2,000 bootstraps) is 13.3 seconds by a single core in FSU Research
Computing Center
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Simulations

Simulation Design

s Dimension, sample size: p = 200,000, ny = ny = 500,000 gb] ...................... -

Pxy Pru
= Setups: Valid Vs S
< <

N(0,6?) N(0,6?) 5o 5,
Gl ~m| & |{#[0.37, [ NO.6)) & [-0.01,0] [[+(0.77, | N(0,62) | 73 | NO.6;) | + 74 | &

P, 5 N(0,62) 5 5 5
0, 0 0 §

AN A 7

= Measurement errors: oy = 1/, /ny, oy = 1/\/171/

a Selection cutoff: @ = 5 X 1072 for benchmark methods and @ = 5 X 10~ for the proposed method CARE

m 1,000 replications for type 1 error rates, 500 replications for power
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Simulation results: 30% invalid Vs

0.3-

0.2-

Bias Proportion

0.11

0.0-

Causal effect size (0)

Method —~ CARE

Bias Proportion

010 -0.05 0.00  0.05
Causal effect size (0)

Method —~ CARE

0.20

0.151

0.101

.08

010 -0.05 000 0.05 0.10 -0.10

- cML-DP -+

-0.05

0.00

0.05

Causal effect size (0)

VW

Weighted-Mec

-0.10

MR-mix

-0.05

0.00

0.05

Causal effect size (0)

-=- MR-Egger

= RAPS

0.10

ContMix

Mean Squared Error

Mean Squared Error

0.00151
0.0010

0.0005 1

010 -0.05 0.00 0.05 0.10
Causal effect size (0)

Weighted-Mode

- — - ———— == == — i ——— — i — — — ]

0.00025-

2010 -0.05 0.00 005 0.10
Causal effect size (0)

MR-Lasso
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Power

Power

1.00 1
0.75+
0.50 1

0.25+

388

1.00 -
0.75+
0.50-

0.25+

0:08

Simulation results: 50%

invalid Vs

A T
// \\\ \\*\\
// \\ B \\\_*\
c / \ - ~ o
S 0.4 : N W (.002- B nL T I e I
T / \ ©
g 1 3 :
2 == //,ﬂ\ \\ %
o 1 \\ §+_
o N \ (7))
8 02- .- N \\ = .
m & 8 0.0011 “~wws
\\\ \\«’r—___' = \\\\\\u- __________ u””.
0.0- e
-0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10 -0.10  -0.05 0.00 0.05 0.10
Causal effect size (0) Causal effect size (0) Causal effect size (0)
Method —~ CARE cML -=- cML-DP -+ IVW Weighted-Median Weighted-Mode
100_ // \\ === el ————— == el = = ———— - — — —
_ S 0.00157 +_
_% 0.756+ 4 T \*\
o / \ D B
g- g \‘\\ E i \‘s_i__.--—--%”’“F
= 0.50 - i o | 5 0.00101
n / n
S Y. =
m _ // ”,*\ o
0.25 = H %7 s
SSLL S gt 0.00051 .
0.05 000 005 0.10 010 -005 000 005  0.10 0.10 -005 0.00 0.05 0.10
Causal effect size (0) Causal effect size (0) Causal effect size (0)
Method —~ CARE MR-mix -= MR-Egger -+ RAPS ContMix MR-Lasso
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Power

Power

Simulation results: 70% invalid 1Vs

/—k y 8
0.6 o IR
0.751 5 0.003 N
c i | = RN
- ’ \ L Rt
5 041 - 3
0.50- o |- A \ S
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% B : /\\\'\ \\ UC) K\\\\
0.25- m 027 / \ \\ S TRl .l e E---1
' N\ \ L = |1 1 | | Ta-ryE
£ . 0.001 -
0.05 P SR g B e
0:00 1 | , | | 0.01_. | T | | ; | |
-0.10  -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10
Causal effect size (0) Causal effect size (0) Causal effect size (0)
Method —~ CARE cML -= cML-DP -+ IVW Weighted-Median Weighted-Mode
100_ /I\\ 00030_ ==l ————— == el = = ————— - — - —
0.75- _ S 0.00251
.9 075_ // \\\ th ‘F\
T / "\ ge; i ¥
= ,.;’/ \ @ 0.0020" A T
0-507 A 2 0501 - S ho o= b= -
// ﬂ. .r/ \ (=2
+ / ) \ ® 0.0015-
\\ // L b4 %
0.25- + B 0.25 1 grea - 12788 2
7 /// /‘/ ’+\_\~\_+ 00010- |
005 "“"'""‘:—\'\-;?-\:— $-—-—--‘-‘£ ————— aA—-—-——1 “ \ -
0.001, . . | | 0.001, | | | | 0.0005 | | , |
-0.10  -0.05 0.00 0.05 0.10 -0.10  -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10
Causal effect size (0) Causal effect size (0) Causal effect size (0)
Method —~ CARE MR-mix -= MR-Egger -+ RAPS ContMix MR-Lasso
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Real data analysis: Negative control outcome analysis

Evaluate Type 1 error rates with real datasets

m Exposures: 124 risk factors (BMI, etc.) and diseases (Alzheimer's, etc.)
m Negative control outcomes!:

¢ Natural hair color before greying (black, blonde, dark brown, light brown, and red) is largely

determined at birth and is not expected to be associated with exposures

¢ Based on the UK Biobank study

= We do not expect any causal effect of exposures on negative control outcomes (6 = 0)

m All data were downloaded from the IEU OpenGWAS Project

1 Sanderson, E., Richardson, T. G., Hemani, G., & Smith, G. D. (2021). The use of negative control outcomes in Mendelian Randomisation to detect
potential population stratification or selection bias. International Journal of Epidemiology, 50(4), 1350-1361
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Observed (-logqo p—-value)

QQ plots for CARE

I I I I I
0.5 1.0 1.5 2.0 2.5

Expected (-logo p—Vvalue)



QQ plots for benchmark methods

Observed (-logqo p—-value)

cML ° —
cML-DP °

IVW o
Weighted—Median
RAPS

| | | | |
0.5 1.0 1.5 2.0 2.5

Expected (-log4q p—Vvalue)
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QQ plots for benchmark methods

Observed (-logqo p—value)

o
o o
Qe
o
o
..
o0®
o
oo ag$
o

MR-mix
MR-Egger
ContMix
MR-Lasso
Weighted-Mode

0.5

I
1.0 1.5 2.0

Expected (-logg p—value)

|
2.5




" Real data analysis: Risk factors & COVID-19

Identify likely causal risk factors/diseases for COVID-19 severity

m Exposures: 124 risk factors/diseases (BMI, Childhood obesity, birth length, Total
cholesterol, waist circumference, overweight, etc.)
s Outcome: COVID-19 severity (B2, Hospitalized COVID-19 vs population)

¢ GWAS data from COVID19hg release 6, European ancestryl
¢® 17,992 cases and 1,810,493 controls

m Use C2 (COVID-19 vs population) for partial validation
¢ 87,870 cases and 2,210,804 controls

e e ===

1 COVID-19 Host Genetics Initiative. (2021). Mapping the human genetic architecture of COVID-19. Nature.



Number of significant risk factors/diseases
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MR-mix IVW ContMix Median Mode MR-Lasso ContMix cML-DP MR-Egger Mode
Methods Methods
Diseases Diseases
B B2: Hospitalized COVID-19 vs population B B2: Hospitalized COVID-19 vs population
_ C2: COVID-19 vs population ~ | C2: COVID-19 vs population
T — e

Figure: FDR p < 0.05 Figure: Suggestive threshold: p < 0.05
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Significant risk factors (FDR p < 0.05)

B2: Hospitalized covid vs. population C2: Covid vs. population
Body mass index A A A A A A
Waist circumference A A A A A A
Risk factors for COVID-19 severity
(according to CDC):
Obesity class 1 A A AN A
m Body mass index
Experiencing mood swings A A A A A A H ObeS|ty ClaSS ]. (BMI Of 30 tO 35)
m Depression
Depressed affect A A A A 5 o - Mental disease
A CARE A p>0.05 v -
cML-DP /A 0.0004 <p<0.05 A 4
A VW A 1 <0.0004
A RAPS

Weighted—Median
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Summary

Instrumental Variables gbl Unmeasured confounder Assumptions: SNPJ is a valid IV if

s Relevance: y; * ()
= Independence: ¢; = 0

a Exclusion restriction: a; = 0

Contribution: A new rerandomization
procedure to break ‘winner’s curse’ bias in

two sample MR

Contribution: A new method (CARE) that

removes ‘winner's curse and measurement

Genetic association A
=Im(y ~ G, . . :
(GWAS . T L > error bias and is robust to pleiotropy and

sample overlap
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Outline

m Other works and future directions
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ldentity likely causal biomarkers

Reference panel

¥

AlT|G

AlA|C

CIT|G

Individual TWAS Summary-based TWAS

& ;
éQ(o &\C’»‘%é\oi |
o) % & Q XL :
o Fg &
AlTIG[T|C © i
Alalc[T|G ) :
ClT r__ i
AlA[C|A|C :r L i
C|A|G|T|G - 5

Figure: Workflow of TWAS!

1 Gusev, Alexander, et al. "Integrative approaches for large-scale transcriptome-wide association studies." Nature Genetics 48.3 (2016): 245-252,



47

ldentity likely causal biomarkers

eQTLGen Consortium

31,684 blood
samples - Individual-level GWAS data

% cis-SNPs Imputed
Phenotype ~ .
Constructing yP expression

1000 Genomes Project

Summary-level GWAS data
E- wlz

LD reference (R) VwT Rw
where Z is the SNP-trait standardized effect.
GTEx Portal
1 . cis-eQTL
O Tuning & effect sizes
validation (W)

Gene expression
reference

Figure: Workflow of SUMMIT

e T —— T

Zhang, Z.7, Bae, Y.", Bradley, J., Wu, L, Wu, C.* (2021+). SUMMIT: An integrative approach for better transcriptomic data imputation improves

causal gene identification. Nature Communications. Under review. Poster talk and Reviewers' Choice at ASHG 2021.
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ldentity likely causal biomarkers
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Number of significant association pairs
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(a) UpSet plot of (b) Number of significant association
overlapping imputation models (evaluated based on all genes)
4000
1.00-
3000
0.75+

Py
=

2000+ =
g 0.50 Methods and AUC
@ — SUMMIT 0.731
«» MR—JTI 0.689

== PrediXcan 0.696
= TWAS—fusion 0.673

Number of significant association pairs

1000+ 0.25- UTMOST 0.681
0 - ; r— T - 0.00+
SUMMIT MR-JTI TWAS-fusion PrediXcan UTMOST . . . : :
Methods 1.00 0.75 0.50 0.25 0.00
(c) Number of significant association specificity
(evaluated based on common genes) (d) ROC plot

s —————

Zhang, Z.%, Bae, Y.", Bradley, J., Wu, L, Wu, C.* (2021+). SUMMIT: An integrative approach for better transcriptomic data imputation improves

causal gene identification. Nature Communications. Under review. Poster talk and Reviewers' Choice at ASHG 2021.
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ldentify likely causal biomarkers

Ildeas:

s [ WAS-type methods can be viewed as one type of MR with
correlated instrumental variables. Make methods more robust to
the violation of IV assumptions

m Consider both cis- and trans-acting elements

m Consider other types of biomarkers (such as proteins) and other

ancestries

R0O1: Uncovering causal protein markers to improve prostate cancer etiology understanding and risk prediction in Africans and Europeans (Pl: Lang
Wu and Chong Wu); Put forward for exception funding by PO
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Enhance risk prediction

= Polygenic risk score (PRS): a risk prediction method by integrating genetic

information from all genetic variants
m [ here are many debates regarding whether PRS is really useful in a clinical setting
m \We evaluate this for coronary artery diseasel

¢ Ensemble PRS: combine multiple GWAS datasets and several PRS methods

¢ Evaluate if adding ensemble PRS to PCE can improve the risk prediction using

the independent White British subjects in UK Biobank

¢ Pooled cohort equation (PCE) is a guideline recommended clinical risk score for

coronary artery disease

o e e

1 King, AT Wu, L. Deng, HW., & Wu, C.* (2021+). Polygenic risk score improves the accuracy of a clinical risk score for coronary artery

disease. Submitted.
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Sensitivity (%)
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20

Enhance risk prediction

C statistics

PRS + PCE 0.753
PCE 0.718
PRS + Age and Sex 0.755

- Age and Sex 0.716

PRS 0.64

I I
60 40

Specificity (%)

20 0

For incident CAD cases, 14.2% of
individuals correctly reclassified to the
higher-risk category and 2.6% incorrectly

reclassified to the lower-risk category
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Enhance risk prediction

Cross-ancestry PRS:

m Poor performance mainly because minor allele frequency and linkage disequilibrium

are different across ancestry
m Causal variants are largely shared across ancestry

m We hypothesize that causal biomarkers are also largely shared across ancestry, and

incorporating likely causal biomarkers may be helpful

RO1: Uncovering causal protein markers to improve prostate cancer etiology understanding and risk prediction in Africans and Europeans (Pl: Lang
Wu and Chong Wu); Put forward for potential funding by PO
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m Online servers (R Shiny) for searching our real

data results

m R packages that are available in both GitHub
and CRAN

m [utorials for distributing our software and pipeline

glmtlp: Generalized Linear Models with Truncated Lasso Penalty

Extremely efficient procedures for fitting regularization path with 10, 11, and truncated lasso penalty for linear regression and logistic
regression models. This version is a completely new version compared with our previous version, which was mainly based on R. New
core algorithms are developed and are now written in C++ and highly optimized.

Version: 2.0.1

Depends: R (=3.5.0)

Imports: foreach, doParallel, ggplot2
Suggests: rmarkdown, knitr, testthat (= 3.0.0)
Published: 2021-12-17

Author: Chunlin Li [aut], Yu Yang [aut, cre], Chong Wu [aut]
Maintainer: Yu Yang <yang6367 at umn.edu>
License: GPL-3

URL: https://yuyangyy.com/glmtlp/
NeedsCompilation: yes

Materials: README NEWS

CRAN checks: glmtlp results

Documentation:

Reference manual: glmtlp.pdf

Vignettes: glmtlp

Downloads:

SUMMIT

Real-data results

Trait/Disease:

Asthma

Method:
SUMMIT

Cutoff:

Bonferroni-corrected cutoff

Show gene annotation in Manhattan plot

Download gene list

Chong Wu
Home

Research
Grants
Teaching
Students
Software
Presentations

Software and pipeline development

chongwulab.shinyapps.io

Real-dataresults Query About
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1 2 3 4 5 6 74 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Chromosome
gene ID gene name p-value chromosome position R2
ENSG00000072682 P4HA2 3.297e-22 5 131579269 0.006

Softwares

I have developed and currently maintain the following software. You can get the latest version from my GitHub repository.

» prclust: R package that provides two algorithms for fitting the penalized regression-based clustering (PRclust). The corresponding paper
is Wu, Kwon, Shen and Pan, 2016.

= MiSPU: R package that presents a novel global testing method called aMiSPU, that is highly adaptive and thus high powered across
various scenarios, alleviating the issue with the choice of a phylogenetic distance. The corresponding paper is Wu, Chen, Kim and Pan,
2016.

= GLMaSPU: R package that makes it incredibly easy to implement some testing methods under high-dimensional generalized linear
models. The corresponding paper is our 2019 Stat Sinica paper.

= glmtlp: R package that makes it easy to implement the truncated lasso penalty under a generalized linear model framework. This
package is similar to glmnet but can be applied with a non-convex penalty.

To help researchers from other field use our newly developed method, we have created and maintained the following software and
pipeline. We assume no prior knowledge in R and all the following software can be run easily and smoothly once the required packages
are installed. Please send me an email (cwu3@fsu.edu) if you have find any bugs when using them.

= JWAS: A software for implementing Imaging-Wide Association Studies (IWAS). The corresponding paper is our 2017 NeuroImage
paper.

= TWAS-aSPU: A more powerful gene-based association test to integrate single set or multiple sets of eQTL data with GWAS individual-
level data or summary statistics. The corresponding paper is our 2017 Genetics paper.

» aSPUpath2: A new pathway-based method for integrating eQTL data with GWAS summary statistics. This can be viewed as an extension
of TWAS to the pathway-based analysis. The corresponding paper is our 2018 Genetic Epidemiology paper.

» egmethyl: A new gene-based test for integrating enhancer-promoter interactions and DNA methylation data with GWAS summary data.
The corresponding paper is our 2019 Bioinformatics paper.

We create a GitHub lab page for the software written by the group members

= CMO: Cross Methylome Omnibus (CMO) integrates genetically regulated DNAm in enhancers, promoters, and the gene body to identify
additional disease-associated genes.

= FOGS: FOGS is a powerful fine-mapping method that prioritizes putative causal genes by accounting for local LD in TWAS results




Future directions summary

Develop new methods/theory/software to

m |dentify likely causal risk factors and biomarkers
m Enhance risk prediction

Extend to other types of big and messy data

m Deep learning

VA 'A%

A RTl C |_ E W) Check for updates

Accurate recognition of colorectal cancer with
semi-supervised deep learning on pathological
Images

Gang Yu 1 Kai Sun® ! Chao Xu® ?, Xing-Hua Shi 3 Chong Wu 4 Ting Xie 1 Run-Qi Meng 5
Xiang-He Meng® ©, Kuan-Song Wang® 7> Hong-Mei Xiao® ©> & Hong-Wen Deng® 68
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Thank you!

Chong Wu

Email: cwu30@fsu.edu

Website: https://wuchong.org
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Details on assumption

Assumption 1 (Measurement error model)
(i) For any j # j’, the pairs, (,BAY],,,BAXJ,) and (ﬁY]{,ﬁ)(]() are mutually independent
(ii) For each j,

Py P [HﬁXJ] a%_ 0

) 2
ﬁXj ﬁxj 0 Ox,

For some v — 0, {Gyj/l/, GXj/v : 1 < j < p} are uniformly bounded and bounded away from zero

Assumption 2 (Instrument selection): The cutoff value satisfies 4 — oo

Assumption 3 (No dominant instrument): The true instrument effect satisfies
2 2\ P
MaX;es, 7j /(ZjeSﬂyj ) — 0
|

When Assumptions 1-3 hold, p, = | S,| — oo and k,/A* — co, where k, = s (}/j/a)(j)z, the
A A

Theorem holds
Back to main slides
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Details on independent |V selections

m In MR studies, we often require independent Vs

m To achieve this, one often applies the clumping (select ones with the smallest

p values in a region) to select independent |Vs: really hard to deal with the

max fy
jes

m In our RIVW, we propose a modified clumping (select ones with the smallest
estimated variance in a region) to select independent IVs

¢ Benefits: our method and theory can go through with this procedure

¢ Disadvantages: lose power compared to the original clumping procedure

Back to main slides
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The beneflts Of rerandOmizatiOn Back to main slides

Conditional on the selection, ,BAX follows a truncated normal distribution and we can reduce bias byl
J

'BAXj:E(ﬂAXj ‘ﬁAX]./UXj‘ >/1)

Simulations:
m Dimension, sample size: p = 200,000, ny, = 100,000
. Threshold: 2= ®~1(1 = Z) = 4.06, a = 5 x 1073
2
o« fy ~7-N(0.OL &) + (1 —n) -8, & =1x10"",7=0.02

s Measurement errors: o, = 1/, /ny
J

Simulation results: Standardized Bias: (,BVX]. —ﬂXj)/GXj

Two-sample: 1.26; Three-sample: -0.020; Bias-reduced: -0.658; Rerandomization: -0.027

——— == = e e

1 Zhong, H., & Prentice, R. L. (2008). Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies.
Biostatistics, 9(4), 621-634.



Details on bias-corrected least squares function

1
When we have true fy, the least squares function is: 5 E
J

2
JES, GYJ
_ A A - _ A -
1 (ﬁyj — 0 ﬂXj,RB - r]> 1 <ﬂ1{l — 0 (ﬁxj — M]) — ’})
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Details on coordinate descent algorithm

s We start with an initial guess of @, denoted as 8", which can be either 0 or generated

from a distribution: 8 ~ Uniform <min1§jSM ,BAY]-/,BAXJ-, max <<y ﬁAYj/ﬂAX]-)

m At iteration kK + 1, we update r; as follows. We order decreasingly

R R 2
(,BYJ. —0- :BXJ-,RB — ’}‘)

2 2
— 07 -0y RB

Then we set rj(kH) = ,BAY] — W ,BA%)RB for the largest K component j = 1,..., K and

rD =0 forj=K+

s We next update @ by RIVW formula

l,....M

i=12,...M.

= \We iterate the above two steps to update r; and @ coordinately until the difference

between %D and

9% is small

Back to main slides
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Discussion

m Applied MR studies require domain expertise; valid |V selections for MR analyses involve

many steps (e.g., removing IVs with potential pleiotropic effect, etc.);

m Researchers report IVW estimators as their main results and use sensitive analyses and

robust MR methods to confirm their findings

m Our new method can serve as one type of robust MR method, which considers winner's

curse bias, measurement errors in |1Vs, and relax valid IV assumptions.

Back to main slides




