L arge-scale imputation models for multi-

ancestry proteome-wide association analysis

THE UNIVERSITY OF TEXAS

Chong Wu MD Anderson
Department of Biostatistics Career Center

Making Cancer History®

The University of Texas MD Anderson Cancer Center

2024 Joint Statistical Meetings
August 6, 2024



Outline

s Background

m New method
m Results

m Extension



Causal inference in observational data

Identify causal biomarkers for a complex disease

Why:
m understand the etiology

m drug development

Challenges:

m the number of biomarkers is large

m biomarkers are correlated

Goal:
identify likely causal biomarkers by

This figure is downloaded from Google Image

using observational data
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Figure: Workflow of TWAS!

1 Gusev, Alexander, et al. "Integrative approaches for large-scale transcriptome-wide association studies." Nature Genetics 48.3 (2016): 245-252,



Mendelian randomization
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Three main challenges

m We only have the access to summary-level pQTL data for many large cohorts (e.g.,
deCODE and ARIC)

m |t is hard to find the exact match independent validation /tuning dataset for protein

prediction model building

m [ he sample size of non-European ancestry is currently relatively small



Build protein prediction model with summary-level data

Imputing gene expression Testing associations
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Figure: Workflow of SUMMIT



SUMMIT

Notation and model setup

14
J=1
a Y is the gene expression levels; X = (X, -+, X})’ is the N X p standardized genotype
matrix of p cis-SNPs around the gene; w = (wy, ---,wp)’ is the cis-eQTL effect size,

which can be estimated by

(Y = Xw)(Y — Xw) ; Y'Y
N | N

X'Y
f(w) = )w oW 4 (W)
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SUMMIT

Notation and model setup

)
Y'Y , ,
f(w) = N + WRW - 2w'r + J,(W),
\___/

Not depend

onw

m J,(-) is a penalty term; such as LASSO, elastic net, MCP, SCAD, and MNet

ar =XY/N=(r,--,r,) is p-dimensional vector of standardized marginal effect size

for cis-SNPs (i.e., correlation between cis-SNPs and gene expression levels)

s R = X'X/N is the linkage disequilibrium (covariance) matrix of the cis-SNPs.

m [ he objective function is

f(w) = WRW — 2W'F + Ow'Ww + @(w)j\

Ensure a unique solution
upon optimization
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| imitation in SUMMIT

1. We require a matched individual-level data to select the tuning parameters in SUMMIT, which are often

hard to obtain

" of pQTL summary statistics: we generate independent pseudo-training and

validation datasets for selecting tuning parameters

2. In Stage 2 test, standard TWAS/PWAS assumes that LD matrix estimated from the reference panel

precisely matched that from the GWAS data
We explicitly consider the difference and use a slightly different formula to estimate the effect size

w'Zl 4 /n, - 2
Y = \/_andVar(}?)=(1ll>}72I S

0]" nS nl" nS 01’2




> BLISS (Biomarker expression Level Imputation using Summary-level Statistics)

“self-training” of pQTL summary statistics: generate independent pseudo-training and validation
datasets for selecting tuning parameter

m key idea was to sample marginal association statistics of pQTL data for a subset of individuals

conditional on the complete summary-level pQTL data.

m \We generated the pseudo-training data

N—n N—n
X | GX ~ N ( Y G'X, Y 2)

m Obtain the pseudo-validation data
X = O X = G X

m We calculated the summary-level predictive R?, which was the squared Pearson correlation coefficient

between genetically predicted and directly measured protein expression levels, using the pseudo-

validation data



13 Build non-European PWAS models with transfer learning

1. Data: the individual-level UKB data of African and Asian ancestries
2. Methods: Super Learner Integration

* We built the protein imputation model for each protein by Elastic-net using cis-SNPs

* Recognizing that the PWAS models for Europeans were built on much larger sample sizes and
could potentially improve the prediction accuracy of Asian models, we applied super learner to

combine the standard (Elastic-net) Asian models and BLISS-based European models

* We use non-negative least squares (NNLS) to produce a weighted sum of predictions from

standard and BLISS models, where the weights were learned from nested five-fold cross-validation
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" Overview of PWAS

A Multi-ancestry PWAS model development
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Results
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Transferability between African and European PWAS results
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Future and Ongoing work

m BLISS can be extended to other omics data: single-cell TWAS

s TWAS/PWAS methods, including SUMMIT /BLISS, can be viewed as one type of
gene-based Mendelian randomization (MR) and can provide valid causal
interpretations only when all genetic variants used in the expression prediction models
are valid instrumental variables (Strong and uncheckable assumption)

m Non-linearity: deep learning model

m Trans-acting elements: how to incorporate information from trans regions (many
challenges, including weak signals, pleiotropy effects, etc.)

s Multi-ethnicity: Improve the robustness and performance (transfer learning)
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Trans results

BONE HOMEOSTASIS
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