Large-scale imputation models for multiancestry proteome-wide association analysis

Chong Wu Department of Biostatistics The University of Texas MD Anderson Cancer Center

2024 Joint Statistical Meetings

THE UNIVERSITY OF TEXAS **MDAnderson Cancer** Center

Making Cancer History[®]

August 6, 2024

Background

New method

Results

Extension

Outline

Causal inference in observational data

Identify causal biomarkers for a complex disease

Why:

- understand the etiology
- drug development

Challenges:

- the number of biomarkers is large
- biomarkers are correlated

Goal:

identify likely causal biomarkers by using observational data

This figure is downloaded from Google Image

Identify likely causal gene expression

1 Gusev, Alexander, et al. "Integrative approaches for large-scale transcriptome-wide association studies." Nature Genetics 48.3 (2016): 245-252.

Figure: Workflow of TWAS¹

Mendelian randomization

Structure equation model:

 $\beta_{X_i} = \gamma_j + \phi_j \cdot \beta_{XU}$ $\beta_{Y_i} = \beta_{Y_i,\mathbb{M}} + \beta_{Y_i,\mathbb{D}} = \theta \cdot \beta_{X_i} + (\alpha_i + \phi_j \cdot \beta_{YU})$

SNP j is a valid instrumental variable (IV) if

- **Relevance:** $\gamma_i \neq 0$
- Independence: $\phi_i = 0$
- **Exclusion restriction:** $\alpha_i = 0$

For a valid IV SNP *j*:

$$\beta_{X_j} = \gamma_j$$
$$\beta_{Y_j} = \theta \cdot \beta_{X_j}$$

Background

New method

Results

Extension

Outline

Three main challenges

- deCODE and ARIC)
- prediction model building
- The sample size of non-European ancestry is currently relatively small

We only have the access to summary-level pQTL data for many large cohorts (e.g.,

It is hard to find the exact match independent validation/tuning dataset for protein

Build protein prediction model with summary-level data

8

Figure: Workflow of SUMMIT

Testing associations

 $\mathbf{Y} =$

Notation and model setup

which can be estimated by

$$f(\mathbf{w}) = \frac{(\mathbf{Y} - \mathbf{X}\mathbf{w})'(\mathbf{Y} - \mathbf{X}\mathbf{w})}{N} + J_{\lambda}(\mathbf{w}) = \frac{\mathbf{Y}'\mathbf{Y}}{N} + \mathbf{w}'\left(\frac{\mathbf{X}'\mathbf{X}}{N}\right)\mathbf{w} - 2\mathbf{w}'\frac{\mathbf{X}'\mathbf{Y}}{N} + J_{\lambda}(\mathbf{w})$$

SUMMIT

$$\sum_{j=1}^{p} w_j \mathbf{X}_j + \epsilon$$

• Y is the gene expression levels; $\mathbf{X} = (X'_1, \dots, X'_p)'$ is the $N \times p$ standardized genotype matrix of p cis-SNPs around the gene; $\mathbf{w} = (w_1, \dots, w_p)'$ is the cis-eQTL effect size,

Notation and model setup $f(\mathbf{w}) = \frac{\mathbf{Y}'\mathbf{Y}}{N} + \mathbf{w}'\mathbf{R}\mathbf{w} - 2\mathbf{w}'\mathbf{r} + J_{\lambda}(\mathbf{w}),$

- $I_{\lambda}(\cdot)$ is a penalty term; such as LASSO, elastic net, MCP, SCAD, and MNet
- $\mathbf{r} = \mathbf{X}'\mathbf{Y}/N = (r_1, \dots, r_p)'$ is p-dimensional vector of standardized marginal effect size

for cis-SNPs (i.e., correlation between cis-SNPs and gene expression levels)

- $\mathbf{R} = \mathbf{X}'\mathbf{X}/N$ is the linkage disequilibrium (covariance) matrix of the cis-SNPs.
- The objective function is

 $\tilde{f}(\mathbf{w}) = \mathbf{w}'\tilde{\mathbf{R}}\mathbf{w} - 2\mathbf{w}'\tilde{\mathbf{r}} + \theta\mathbf{w}'\mathbf{w} + J_{\lambda}(\mathbf{w})$

SUMMIT

Ensure a unique solution

upon optimization

Limitation in SUMMIT

1. We require a matched individual-level data to select the tuning parameters in SUMMIT, which are often hard to obtain Solution: "self-training" of pQTL summary statistics: we generate independent pseudo-training and validation datasets for selecting tuning parameters

2. In Stage 2 test, standard TWAS/PWAS assumes that LD matrix estimated from the reference panel precisely matched that from the GWAS data Solution: We explicitly consider the difference and use a slightly different formula to estimate the effect size $\hat{\gamma} = \frac{\hat{w}' Z / \sqrt{n_s}}{\sigma_r} \text{ and } \widehat{\text{Var}}$

$$\hat{\mathbf{r}}(\hat{\gamma}) = \left(\frac{1}{n_s} + \frac{1}{n_r}\right)\hat{\gamma}^2 + \frac{\zeta^2}{n_s\sigma_r^2}$$

BLISS (Biomarker expression Level Imputation using Summary-level Statistics)

"self-training" of pQTL summary statistics: generate independent pseudo-training and validation datasets for selecting tuning parameter

- key idea was to sample marginal association statistics of pQTL data for a subset of individuals conditional on the complete summary-level pQTL data.
- We generated the pseudo-training data

12

$$G'_{(tr)}X_{(tr)} \mid G'X \sim \mathcal{N}\left(\frac{N-n}{N}G'X, \frac{N-n}{N}\Sigma\right)$$

Obtain the pseudo-validation data

$$G'_{(v)}X$$

validation data

$$X_{(v)} = G'X - G'_{(tr)}X_{(tr)}$$

• We calculated the summary-level predictive R^2 , which was the squared Pearson correlation coefficient between genetically predicted and directly measured protein expression levels, using the pseudo-

Build non-European PWAS models with transfer learning

1. Data: the individual-level UKB data of African and Asian ancestries

2. Methods: Super Learner Integration

- We built the protein imputation model for each protein by Elastic-net using *cis*-SNPs
- Recognizing that the PWAS models for Europeans were built on much larger sample sizes and could potentially improve the prediction accuracy of Asian models, we applied super learner to combine the standard (Elastic-net) Asian models and BLISS-based European models
- We use non-negative least squares (NNLS) to produce a weighted sum of predictions from standard and BLISS models, where the weights were learned from nested five-fold cross-validation

Background

New method

Results

Extension

Outline

Overview of PWAS

Α Multi-ancestry PWAS model development Proteomic deCODE genetics 30 genetic datasets Q Improve non-European Large-scale protein models using individual-level quantitative trait loci data with super learner (pQTL) studies P Ρ >>>Model training using summary-level data **R**eference panels **pQTL** summary **PWAS models** statistics (E.g., 1000 Genomes)

Application in five GWAS databases

Simulation results

Transferability between African and European PWAS results

C	
L	

18

Trait(s)	Gene(s)	Beta	<i>P</i> value	Beta	P value	GWAS (GWAS Catalog)	Colocalization (PPH4 > 0.8)	pQTL MR (FDR < 0.05)
Alzheimer's disease	TREM2	β < -0.013	P < 2.57×10⁻ ⁸	β < -0.017	<i>P</i> < 3.67×10 ⁻⁴	TREM2	TREM2	TREM2
Venous thromboembolism (VTE)	ABO, F11, PROC, PROS1, THBD	β > 0.012	<i>P</i> < 1.01×10 ⁻⁵	β > 0.020	<i>P</i> < 5.45×10 ^{−4}	ABO, F11, THBD	ABO, F11	ABO, F11
Varicose veins	ABO	β > 0.002	<i>P</i> < 1.23×10 ⁻⁴	β = 0.011	<i>P</i> = 1.59×10 ⁻⁸	ABO	ABO	ABO
Cardiovascular ideal health score (IHS)	ERBB4, HP	β > 0.005	<i>P</i> < 4.87×10⁻⁵	β > 0.020	<i>P</i> < 8.40×10 ⁻⁵		HP	ERBB4, HP
Non-alcoholic fatty liver disease (NAFLD)	IL1RN	β > 0.025	<i>P</i> < 5.47×10 ⁻¹⁰	β = 0.076	$P = 3.46 \times 10^{-4}$			IL1RN
Type 2 diabetes (T2D)	MSR1, TREML2	β > 0.008	<i>P</i> < 2.92×10 ⁻⁴	β > 0.011	<i>P</i> < 6.08×10 ⁻⁴	TREML2		MSR1, TREML2

19 Consistent PWAS findings across reference proteomic datasets

					-					
Trait(s)	Gene(s)	Beta	P value	Beta	P value	Beta	P value	GWAS (GWAS Catalog)	Colocalization (PPH4 > 0.8)	pQTL MR (FDR < 0.05)
Alzheimer's disease	BCAM, CD55, EPHB4, GRN, LILRB1, SIRPA, TREM2	β > 0.005	P < 2.95×10⁻⁴	β > 0.005	<i>P</i> < 1.03×10 ⁻⁴	β > 0.002	<i>P</i> < 1.00×10 ⁻⁴	BCAM, CD55, EPHB4, GRN, TREM2	GRN, TREM2, SIRPA	BCAM, CD55, EPHB4, GRN, LILRB1, SIRPA, TREM2
Post-traumatic stress disorder (PTSD)	CTSF, CTSV, CD14	β > 0.036	<i>P</i> < 2.83×10 ⁻⁴	β > 0.022	<i>P</i> < 3.64×10 ⁻⁴	β > 0.014	P < 5.59×10⁻⁴		CTSF	CTSF, CTSV, CD14
Coronary artery disease (and angiographic burden)	IL6R, PCSK9, SPARCL1	β > 0.016	<i>P</i> < 1.09×10 ⁻⁴	β > 0.023	P < 2.56×10 ⁻⁴	β > 0.008	P < 4.15×10⁻⁵	IL6R, PCSK9	IL6R, PCSK9	IL6R, PCSK9
Peripheral artery disease	C2, MMP12	β > 0.006	<i>P</i> < 7.05×10 ⁻⁸	β > 0.012	P < 1.09×10⁻ ⁸	β > 0.007	<i>P</i> < 5.57×10 ⁻⁴		MMP12	C2, MMP12
Venous thromboembolism (VTE)	GP6, NPPB, OBP2B	β > 0.018	<i>P</i> < 1.01×10 ⁻⁶	β > 0.012	P < 9.28×10⁻⁵	β > 0.019	P < 9.85×10⁻⁵		GP6, NPPB	GP6, NPPB
Varicose veins	FABP2, RSPO3, TNFSF12	β > 0.026	<i>P</i> < 2.82×10 ⁻⁴	β > 0.008	<i>P</i> < 3.63×10 ⁻⁵	β > 0.002	<i>P</i> < 5.85×10 ⁻⁵	RSPO3	RSPO3	FABP2, RSPO3, TNFSF12
Cardiovascular ideal health score (IHS)	PCSK9, ENTPD6	β < -0.025	<i>P</i> < 5.16×10⁻ ⁶	β < -0.041	<i>P</i> < 3.42×10 ⁻⁵	β < -0.024	P < 1.55×10 ⁻⁵		PCSK9, ENTPD6	PCSK9, ENTPD6
Non-alcoholic fatty liver disease (NAFLD)	APOH, FCRLB, IL1RN, RSPO3, SPON1 [*]	β > 0.009	<i>P</i> < 2.68×10⁻ ⁶	β > 0.017	<i>P</i> < 9.48×10 ⁻⁵	β > 0.009	<i>P</i> < 1.08×10 ⁻⁵	RSPO3	АРОН	APOH, FCRLB, IL1RN, RSPO3
Type 2 diabetes (T2D)	MLN, NCAN, NELL1, PAM, AGER, BST1	β > 0.005	P < 2.53×10 ⁻⁴	β > 0.004	P < 1.65×10 ⁻⁴	β > 0.002	<i>P</i> < 5.87×10 ⁻⁴	NELL1, PAM	NELL1, PAM	MLN, NCAN, NELL1, PAM, AGER, BST1

20

FinnGen data analysis

MRC IEU OpenGWAS data analysis

https://www.gcbhub.org

Search for a gene or a phenotype

Latest News

NOW

Ο

GCBhub.org is now online!

Web-based cloud computing is on the way!

OCTOBER 2023 Our preprint is now available on bioRxiv! Visit here for more details.

Contact Us through e-mail

This website is for informational purposes only. The website is created by Zichen Zhang using Pheweb. The logo is AI-generated using DALL-E 3.

🔒 gcbhub.org	Ś	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
o Learning - Online LaTeX Editor Overleaf	Key How to record the screen - Apple Support	G GCB Hub
	GitHu	ıb Phenotypes Top Hits About

Chong Wu, Zichen Zhang, Xiaochen Yang, Bingxin Zhao

© 2023 gcbhub.org. All rights reserved.

This website and its underlying data are licensed under a Creative Commons Attribution 4.0 International License.

Future and Ongoing work

- BLISS can be extended to other omics data: single-cell TWAS
- TWAS/PWAS methods, including SUMMIT/BLISS, can be viewed as one type of
 - gene-based Mendelian randomization (MR) and can provide valid causal
 - interpretations only when all genetic variants used in the expression prediction models
- Non-linearity: deep learning model
- Trans-acting elements: how to incorporate information from trans regions (many challenges, including weak signals, pleiotropy effects, etc.)
- Multi-ethnicity: Improve the robustness and performance (transfer learning)

are valid instrumental variables (Strong and uncheckable assumption)

Future and Ongoing work

- BLISS can be extended to other omics data: single-cell TWAS
- TWAS/PWAS methods, including SUMMIT/BLISS, can be viewed as one type of
 - gene-based Mendelian randomization (MR) and can provide valid causal
 - interpretations only when all genetic variants used in the expression prediction models
- Non-linearity: deep learning model
- Trans-acting elements: how to incorporate information from trans regions (many challenges, including weak signals, pleiotropy effects, etc.)
- Multi-ethnicity: Improve the robustness and performance (transfer learning)

are valid instrumental variables (Strong and uncheckable assumption)

Trans results

Trans results

VICIOUS CYCLE OF BONE METASTASIS

References

SUMMIT:

Zhang, Zichen, Ye Eun Bae, Jonathan R. Bradley, Lang Wu, and Chong Wu. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification." *Nature Communications* **13**, 6336 (2022).

BLISS:

Wu, Chong, Zichen Zhang, Xiaochen Yang, and Bingxin Zhao. "Large-scale imputation models for multi-ancestry proteome-wide association analysis." *bioRxiv* (2023): 2023-10.

GUB-Hub: https://www.gcbhub.org/

Acknowledgements

Bingxin Zhao @ Upenn

Xiaochen Yang @ Purdue

Lang Wu @ Hawaii

Zichen Zhang @MDA

Jon Bradley @ FSU

Thank Aditya and Chongliang for invitation!

Ye Eun Bae @ FSU

biobank

Thank you!

Email: <u>cwu18@mdanderson.org</u>

Website: <u>https://wuchong.org</u>

Chong Wu