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Benchmarking DNA foundation models for
genomic and genetic tasks

Haonan Feng1, Lang Wu2, Bingxin Zhao 3, Chad Huff4, Jianjun Zhang 5,
Jia Wu 6, Lifeng Lin 7, Peng Wei 1 & Chong Wu 1,8

The rapid evolution of DNA foundation models promises to revolutionize
genomics, yet comprehensive evaluations are lacking. Here, we present a
comprehensive, unbiased benchmark of five models (DNABERT-2, Nucleotide
Transformer V2, HyenaDNA, Caduceus-Ph, and GROVER) across diverse
genomic and genetic tasks including sequence classification, gene expression
prediction, variant effect quantification, and topologically associating domain
(TAD) region recognition, using zero-shot embeddings. Our analysis reveals
that mean token embedding consistently and significantly improves sequence
classification performance, outperforming other pooling strategies. Model
performance varies among tasks and datasets; while general purpose DNA
foundation models showed competitive performance in pathogenic variant
identification, they were less effective in predicting gene expression and
identifying putative causalQTLs compared to specializedmodels. Ourfindings
offer a framework formodel selection, highlighting the impact of architecture,
pre-training data, and embedding strategies on performance in genomic and
genetic tasks.

Led by the advances in Natural Language Processing (NLP) in recent
years, foundation language models through self-supervised pre-train-
ing have been the paradigm of decoding information in sequences. By
representing sequences as numerical embeddings, foundation lan-
guagemodels can outperformpreviousmethods inmany downstream
tasks such as sequence classification and sequence generation. As
natural language-based foundation models like GPT-41, Llama 32, and
Qwen33 have been proven successful, similar ideas have been exten-
ded to other domains by interpreting domain-specific languages with
unique semantic rules, and examples include foundation models on
programming codes, protein sequences and single-cell sequencing4–7.
With the long-lasting interests in decoding DNA sequences to under-
stand the epigenetic patterns, transcriptional regulations, and disease

associations8,9, DNA foundation language models have also emerged
recently including DNABERT-210, Nucleotide Transformer11,
HyenaDNA12, Caduceus-Ph13, and GROVER14. These models are pre-
trained on large genomic datasets such as the human reference
genome15, human whole-genome sequencing datasets like 1000 Gen-
omes project datasets16, and multi-species genome datasets10,11. After
fine-tuning, they have shown promising results in DNA sequence
classification tasks.

A critical aspect of DNA foundationmodels is themethod used to
generate sequence embeddings, with sentence-level summary token,
mean token embeddings, and maximum pooling being three primary
approaches. The comparative efficacy of these embeddingmethods in
DNA sequence analysis remains understudied, despite their potential
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impact on model performance across varying sequence lengths and
biological contexts.

With the rapid evolution of DNA foundation models of various
architectures and the wide range of genomic analysis tasks to be
solved, there is a pressing need for effectively evaluating thesemodels.
However, most of the current evaluations on DNA foundation models
are biased, as they are conducted after fine-tuning10–12, which may
introduce biases in model performance comparison. For instance,
different models may have various levels of overfitting depending on
which layers are selected to update during fine-tuning. The use of
advanced parameter-efficient fine-tuning methods17,18 further compli-
cates this issue by introducing additional hyperparameters that could
impactmodel fitting. A recent work leveraged this problem by directly
comparing DNA foundation models based on their output
embeddings19, where the weights in all layers were frozen and a
trainable convolutional neural network (CNN) was appended to the
last layer. While this approach mitigates fine-tuning biases, the study
scopewas limited to several human genome analysis tasks. There is yet
to be a comprehensive benchmark which addresses crucial challenges
including model performance across diverse genomic tasks and spe-
cies, scalability with sequence length, and ability to capture biologi-
cally significant features.

In this study, we first provide a comprehensive and unbiased
evaluation of five state-of-the-art DNA foundation language models
across 57 diverse datasets spanning four major categories: human
genome region classification, multi-species genome region classifica-
tion, human epigenetic trait classification, and multi-species epige-
netic trait classification. Our benchmarking assesses models’
performance across multiple species, sequence lengths, and genomic
tasks including promoter identification, enhancer classification, tran-
scription factor binding site prediction, and epigenetic modification
detection. We systematically evaluate three different poolingmethods
(summary token, mean token, andmaximumpooling) for eachmodel,
revealing substantial and consistent performance differences. Beyond
classification tasks, we extend our evaluation to assess models’ cap-
abilities in gene expression prediction, where we evaluate how well
zero-shot embeddings can predict tissue-specific expression levels
fromgenomic sequences usingGTEx v8data.We further assess variant
effect quantification, examining models’ ability to distinguish patho-
genic from common variants and identify functional quantitative trait
loci (QTLs). Additionally, we investigate topologically associating
domain (TAD) recognition to determine whether models inherently
learn higher-order chromatin structures. We also conduct novel
experiments to understand factors influencing model performance,
including a controlled pre-training experiment comparing multi-
species versus human-only training data. Our evaluation framework
provides actionable insights for model selection, the strengths and
limitations of different architectural choices, embedding strategies,
and pre-training approaches across diverse genomic applications. All
code and datasets are available at https://github.com/ChongWuLab/
dna_foundation_benchmark.

Results
Sequence classification: pooling methods benchmark
Weevaluated the zero-shot embeddings fromDNA foundationmodels
on 57 sequence classification datasets, including 52 binary classifica-
tion datasets and 5 multi-class datasets (Section Methods: Bench-
marking Datasets). For each dataset, we first generated zero-shot
embeddings for all sequences, then split the samples into training and
testing sets, and finally trained a classifier and reported its perfor-
mance predicting the labels of each sequence in the test set from their
zero-shot embeddings (Section Methods: Benchmarking Methods).
The detailed workflowof sequence classification benchmarking can be
found in Fig. 1.

First, we evaluated three output pooling methods: sentence-level
summary-token ([CLS] or [SEP]) embedding, mean token embedding,
and maximum pooling. We sought to determine the optimal method
for generating sequence-level representations, as the choice of pool-
ing method can significantly alter how genomic information is cap-
tured and passed to downstream analyses. The results revealed
significant differences in the performance of pooling methods across
all DNA foundation models. Using DeLong’s test for statistical sig-
nificance (p <0.01), we systematically assessed which pooling method
performed better for each dataset. Our analysis showed that mean
token embedding consistently delivered superior performance against
others (Supplementary Table 1). Specifically, mean token embedding
delivered higher AUROC (AUC) with statistical significance than both
summary-token embedding andmaximum pooling, in 41 out of the 52
binary sequence classification datasets for DNABERT-2, 42 for NT-v2,
35 for HyenaDNA, 37 for Caduceus-Ph, and 41 for GROVER. On the
contrary, maximum pooling or summary-token pooling rarely out-
performed the other methods, being optimal in only a few specific
datasets.

Figure 2 illustrates the distribution of AUC scores for all models
when using different pooling methods. The average increase in AUC
when switching from summary token to mean token embedding was
4.0% (interquartile range: 2.0%−5.5%) for DNABERT-2, 6.8% (inter-
quartile range: 3.7%−9.6%) for NT-v2, 8.7% (interquartile range: 4.6%
−12.9%) for HyenaDNA, 5.9% (interquartile range: 2.8%−9.1%) for
Caduceus-Ph, and 1.4% (interquartile range: 0.7%−1.9%) for GROVER
across all binary classification tasks. This consistent enhancement with
statistical significance underscores the superiority of mean token
embedding.

The improved performance with mean token embedding sug-
gests that, by averaging the embeddings of all non-padding tokens,
mean token embedding may provide a more comprehensive repre-
sentation of the entire DNA sequence as opposed to relying on a single
summary token. This finding is particularly relevant for some DNA
sequence classification tasks, such as promoter and enhancer identi-
fication, where the discriminative features may be distributed
throughout the sequence rather than concentrated in a specific region.
For example, in the promoter identification task for the GM12878 cell
line, mean token embedding improved the AUC from 0.964 to 0.986
for DNABERT-2, a 2.3% increase of statistical significance (p < 0.01 by
DeLong’s test). More strikingly, for the B. amyloliquefaciens genome,
the improvement was from 0.689 to 0.864 for HyenaDNA, represent-
ing a 25.4% increase of statistical significance (p <0.01 by DeLong’s
test). These examples illustrate how mean token embedding can cap-
ture distributed features more effectively across the entire sequence.

Additionally, we observed that the performance differences
among the models were reduced when using mean token embedding,
implying that this pooling method helps to mitigate the architectural
variations across the models. Specifically, the range of average AUC
scores across models decreased from 0.708 to 0.799 with summary-
token pooling, to 0.795 to 0.822 with mean pooling. This observation
further reinforces the value of mean pooling as a more robust
approach that can help standardize model evaluation.

With the optimal pooling method established, we also evaluated
our choice of the downstream classifier. We selected random forest as
our primary model, as it requires minimal hyperparameter tuning and
can inherently handle high-dimensional inputs without dimension
reduction, in both ways helps avoid the introduction of additional
evaluation bias. It also has the capacity to capture the complex, non-
linear relationships potentially encoded in genomic sequences. To
evaluate our approach, we run random forest, naïve Bayes, and elastic-
net logistic regression on all binary sequence classification datasets
(Supplementary Fig. 1). The results reconfirmed that mean token
embedding was the superior pooling strategy across all foundation
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Fig. 1 | Overview of sequence classification benchmark workflow. DNA
sequences are input into foundation models, generating token embeddings from
the final layer. These embeddings undergo output pooling to produce high-
dimensional representations of input sequences. A supervised classifier (random

forest) is trained on these embeddings using labeled datasets. Model performance
is evaluated on a independent test set using multiple metrics, with AUROC as the
primary measure.

Fig. 2 | Boxplots comparing the AUC scores distribution on the choice of using
mean output pooling, summary-token pooling, or maximum pooling. We cal-
culate AUC scores from all 52 binary sequence classification datasets included in

this study. Boxplots show the median (center line), interquartile range
(box = 25th–75th percentiles), and whiskers correspond to 1.5 × interquartile range.
minima and maxima correspond to the whisker ends.
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models and all classifiers. Within mean pooling configuration, both
random forest and elastic-net proved to be the more competitive
classifiers. Given its strong performance and well-documented gen-
eralization capabilities, we selected random forest as the standard
classifier for all analyses in our sequence classification benchmark,
providing a reliable estimate of each foundationmodel’s performance
on similar tasks.

Sequence classification: human genome regions
We evaluated the performance of the five DNA foundation models,
DNABERT-2, NT-v2, HyenaDNA, Caduceus-Ph, and GROVER, on a
diverse set of human genome sequence region classification tasks. For
these tasks, as shown in Table 1, when using mean token pooling, all
five models achieved AUC scores above 0.8 on the majority of tasks,
indicating their ability to capture meaningful semantic information
from human DNA sequences. These results show that zero-shot
embeddings generatedby thesemodels are sufficiently informative for
supervised learning models, even without fine-tuning. Among the five
models, Caduceus-Ph exhibited superior overall performance across
multiple human genome classification tasks. For promoter identifica-
tion in cell lines GM12878, HUVEC, Hela-S3 and NHEK, both DNABERT-
2 and Caduceus-Ph achieved statistically significant superior perfor-
mance. DNABERT-2 showed particular strength in splice site predic-
tion, significantly outperforming other models in both donor and
acceptor identification tasks with AUCs of 0.906 and 0.897, respec-
tively. For transcription factor binding site (TFBS) prediction,
Caduceus-Ph consistently outperformed all other models, demon-
strating its ability to capture complex regulatory patterns in thehuman
genome.

When compared to our baseline CNN model trained directly on
DNA sequences, the DNA foundation models demonstrated clear

advantages in several key tasks (SupplementaryData 1,2). For example,
for GM12878 and HUVEC cell lines promoter identification, DNABERT-
2, GROVER, Caduceus-Ph, and NT-v2 all showed significant improve-
ments over the baseline CNN. In enhancer identification tasks. Overall,
these four DNA foundation models demonstrated statistically sig-
nificant performance gains compared to the baseline CNN.

Sequence classification: multispecies genome regions
In multispecies genome classification tasks using mean token pooling
(Table 2), HyenaDNA demonstrated unexpected advantage in Arabi-
dopsis promoter identification, achieving statistically significant
superior performance for both TATA and NonTATA promoters with
AUC scores of 0.961 and 0.955 respectively, despite being pre-trained
exclusively on human genomes. This suggests HyenaDNA’s archi-
tecture enables effective transfer of learned representations to plant
genomes. For the human versus worm classification task, Caduceus-Ph
and GROVER demonstrated the strongest performance (AUCs: 0.992
and 0.984), with both models achieving statistically significant
advantages over other models. In bacterial promoter identification,
GROVER showed exceptional performance for R. Capsulatus (AUC:
0.715) while no model achieved clear statistical superiority for B.
amyloliquefaciens, suggesting challenges in generalizing to more dis-
tantly related prokaryotic genomes.

Compared to the baseline CNN model, DNA foundation models
generally underperformed for these multispecies tasks (Supplemen-
tary Data 1, 2). This pattern was particularly evident for the almost all
datasets in Table 2, as most of the times all foundation models were
outperformed by the baseline CNN. Such performance gap could be
expected, as the baseline CNN is specifically optimized for each data-
set with all parameters updated during training, while foundation
models rely solely on their pre-training to generate embeddings. In

Table 1 | The AUC results for binary sequence classification tasks on human genome

Data DNABERT-2 NT-v2 HyenaDNA Caduceus-Ph GROVER

DNase I Hypersensitive 0.8666 0.8524 0.8295 0.8799 0.857

Human TFBS 1 0.8382 0.8315 0.8301 0.8796 0.8618

Human TFBS 2 0.821 0.809 0.8205 0.8687 0.8495

Human TFBS 3 0.7896 0.7974 0.7875 0.8249 0.8158

Human TFBS 4 0.726 0.7103 0.7149 0.7725 0.763

Human TFBS 5 0.9204 0.9149 0.9159 0.9294 0.931

Promoter GM12878 0.9856 0.9835 0.976 0.9865 0.9839

Promoter HUVEC 0.9903 0.987 0.9817 0.9896 0.9885

Promoter Hela-S3 0.9886 0.9838 0.981 0.9871 0.9857

Promoter NHEK 0.9501 0.9323 0.9271 0.9567 0.9507

Acceptor 0.8969 0.7928 0.7946 0.8449 0.8041

Coding 0.9438 0.9289 0.9406 0.9735 0.9594

Donor 0.9056 0.8198 0.8128 0.8535 0.819

Enhancer 0.8717 0.8674 0.8339 0.8384 0.8554

Enhancer Cohn 0.8223 0.7894 0.7754 0.821 0.8161

Enhancer Ensembl 0.9369 0.9389 0.9356 0.9431 0.9382

Open chromatin region 0.7253 0.7183 0.7191 0.765 0.7455

Promoter All 300bps 0.9426 0.9445 0.9394 0.9519 0.9402

Promoter All 70bps 0.8311 0.8527 0.832 0.8748 0.8506

Promoter NonTATA 251 bps 0.9297 0.8905 0.928 0.9426 0.9395

Promoter NonTATA 300bps 0.9765 0.9758 0.9662 0.9834 0.9728

Promoter NonTATA 70bps 0.8531 0.8729 0.8516 0.8961 0.8704

Promoter TATA 300bps 0.7646 0.7791 0.8077 0.76 0.78

Promoter TATA 70bps 0.7781 0.7947 0.7827 0.8103 0.796

The tasks include promoter region identification (acrossmultiple datasets), coding region detection, splice site donor and acceptor identification, enhancer identification (acrossmultiple datasets),
transcription factor binding site identification (acrossmultiple datasets), and open chromatin region identification (acrossmultiple datasets). Usingmean token poolingmethod. Bolded: higher than
at least two other AUCs, p <0.01. P-values are calculated using one-sided DeLong’s test.
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tasks involving multispecies genomes, such discrepancy may have
been amplified.

Sequence classification: human & multispecies epigenetic
modification
We further investigated the performance of the foundationmodels on
several epigenetic modification prediction tasks. For human epige-
netic modifications, specifically the detection of 5-methylcytosine
(5mC) andN6-methyladenosine (6mA), usingmean tokenpooling,NT-
v2, Caduceus-Ph, and GROVER consistently demonstrated strong
performance (Table 3). All three models achieved statistically sig-
nificant superiority for 5mC detection, with AUCs of 0.738 (NT-v2),
0.783 (Caduceus-Ph), and 0.744 (GROVER) respectively. A similar
pattern was observed for 6mA detection, where NT-v2, Caduceus-Ph,
and GROVER again outperformed the other models.

On yeast epigenetic mark prediction, among the foundation
models, DNABERT-2 showed especially robust performance across the
full range of yeast epigenetic marks and performance on the 4mC

detection tasks across multiple species is detailed in Table 3. As noted
in our Methods, the interpretation of results for the eukaryotic 4mC
datasets (A. thaliana, C. elegans, D. melanogaster) warrants particular
consideration due to the nature of their annotations, and these tasks
are thus viewed as exploratory for model capabilities on such data.
With these considerations, the 4mC detection tasks (Table 4) showed
that NT-v2 achieved notable performance for A. thaliana (AUC: 0.633),
C. elegans (AUC: 0.649) and D. melanogaster (AUC: 0.652). Caduceus-
Ph demonstrated strong results for the E. coli dataset (AUC: 0.628),
where 4mC annotations are more directly supported. For C. elegans,
bothNT-v2 andGROVER showed significantly better performance than
other models.

Compared to the baselineCNN,DNA foundationmodels generally
underperformed on the human and multi-species epigenetic tasks
(Supplementary Data 1,2). However, this trend was reversed for yeast
epigenetic mark prediction, Multiple DNA foundation models
demonstrated a clear and significant advantage over the baseline CNN.
In contrast to other epigenetic tasks, for most yeast datasets, several

Table 2 | The AUC results for binary sequence classification tasks which have multiple species involved, including promoter
region prediction (first four rows), human vs worm classification and mouse transcription factor binding site (TFBS)
identification

Data DNABERT-2 NT-v2 HyenaDNA Caduceus-Ph GROVER

Promoter Arabidopsis NonTATA 0.9457 0.9395 0.9547 0.9437 0.949

Promoter Arabidopsis TATA 0.951 0.95 0.9609 0.9372 0.9486

Promoter B.Amyloliquefaciens 0.8518 0.8225 0.8643 0.8686 0.8617

Promoter R.Capsulatus 0.6855 0.6746 0.7116 0.67 0.7154

Human vs worm 0.9799 0.9785 0.9502 0.9915 0.9843

Mouse TFBS 1 0.711 0.704 0.5899 0.6841 0.6947

Mouse TFBS 2 0.9072 0.9005 0.8996 0.9472 0.9093

Mouse TFBS 3 0.9308 0.9269 0.8944 0.9351 0.9327

Mouse TFBS 4 0.7622 0.6942 0.588 0.7047 0.6815

Mouse TFBS 5 0.6783 0.7077 0.627 0.715 0.6822

Using mean token pooling method. Bolded: higher than at least two other AUCs, p < 0.01. P-values are calculated using one-sided DeLong’s test.

Table 3 | The AUC results for each model on 5mC, 6mA detection in human; epigenetic marks detection in yeast, and 4mC
detection in multiple species

Data DNABERT-2 NT-v2 HyenaDNA Caduceus-Ph GROVER

Human 5mC 0.685 0.7377 0.6843 0.783 0.7437

Human 6mA 0.7351 0.7508 0.7377 0.7731 0.7671

Yeast H3 0.9137 0.8951 0.8996 0.9285 0.9056

Yeast H3K14ac 0.7597 0.7407 0.7067 0.7297 0.7301

Yeast H3K36me3 0.7989 0.7849 0.7395 0.7662 0.7533

Yeast H3K4me1 0.7306 0.7115 0.6994 0.7071 0.696

Yeast H3K4me2 0.7078 0.6847 0.6854 0.6895 0.6939

Yeast H3K4me3 0.6813 0.6603 0.6486 0.6595 0.668

Yeast H3K79me3 0.8565 0.8436 0.8215 0.845 0.8427

Yeast H3K9ac 0.7922 0.7687 0.7555 0.7779 0.7692

Yeast H4 0.9314 0.9104 0.8983 0.9304 0.908

Yeast H4ac 0.7473 0.7263 0.6979 0.7235 0.7175

A.Thaliana 4mC 0.5994 0.6332 0.5941 0.6146 0.6026

C.Elegans 4mC 0.5985 0.6487 0.5964 0.5964 0.6057

D.Melanogaster 4mC 0.6147 0.6519 0.6096 0.6161 0.6167

E.Coli 4mC 0.5492 0.6028 0.6105 0.6283 0.5851

G.Pickeringii 4mC 0.5958 0.6302 0.6292 0.6348 0.6293

G.Subterraneus 4mC 0.5802 0.6145 0.609 0.6079 0.6061

Using mean token pooling method. Bolded: higher than at least two other AUCs, p < 0.01. P-values are calculated using one-sided DeLong’s test.

Article https://doi.org/10.1038/s41467-025-65823-8

Nature Communications |        (2025) 16:10780 5

www.nature.com/naturecommunications


foundation models outperformed the task-specific CNN. For instance,
in predicting Yeast H3, H3K4me1, and H3K79me3 marks, five and four
foundation models respectively showed superior performance. This
suggests that the features learned during pre-training are particularly
effective for capturing the signals related to yeast histone modifica-
tions. Overall, epigenetic prediction proved more challenging for all
models, with AUC scores typically 10–15% lower than for tasks distin-
guishing functional genomic regions.

Lastly, in the rest five classification tasks with more than two
classes (Supplementary Table 2), we observed notable performance
variations among the foundation models. HyenaDNA demonstrated
exceptional performance in the Regulatory Region Type classification
task, achieving an accuracy of 0.83, significantly outperforming the
rest. Similarly, for Splice Site Type classification using NT’s dataset,
HyenaDNA achieved the highest accuracy of 0.563. For Covid Variants
classification, DNABERT-2 and GROVER take the lead, while for
Enhancer Strength prediction, GROVER,DNABERT-2, andCaduceus-Ph
all performed comparably with accuracies over 0.7. These results
suggest that different model architectures have varying strengths in
multi-class discrimination tasks, with HyenaDNA’s architecture
appearing particularly well-suited for capturing complex patterns
necessary for discriminating between multiple regulatory
region types.

Gene expression prediction
We evaluated DNA foundation models and revealed several key find-
ings about their effectiveness in predicting gene expression from
genomic sequences. Across all foundation models tested, random
forest regression significantly outperformed XGBoost, achieving bet-
ter correlation and lower mean squared error (MSE) between pre-
dicted and actual gene expression values (all p < 0.001)
(Supplementary Table 3), regardless of whether they used shorter or
longer input sequences. Based on these results, we use random forest
regression to predict gene expression from DNA foundation model
zero-shot embeddings, and our subsequent conclusions are all based
on random forest regression outcomes.

On average, the Pearson correlation betweenpredicted and actual
gene expression was modest, ranging from 0.114 to 0.123 across
models using 6k bp sequences inputs (or corresponding center-
cropped sequences for GROVER) (Table 4). This suggests that zero-
shot embeddings from DNA foundation models, without fine-tuning,
provide limited information for predicting subject-specific tissue-level
gene expression. Within the short sequence models, Caduceus-Ph and
HyenaDNA exhibited the highest average correlations, significantly

outperforming DNABERT-2 and GROVER. GROVER, which used a
shorter 2048bp input, achieved a slightly lower average correlation
than the other short-sequencemodels. Among long sequencemodels,
Enformer achieved similar performance to Caduceus-Ph. HyenaDNA-
450K demonstrated significantly better performance than Enformer
(p < 0.01). When comparing HyenaDNA and Caduceus-Ph with their
longer sequence input counterparts (HyenaDNA-450K and Caduceus-
Phwith longer sequence inputs) on the same set of genes, weobserved
that extending the sequence length significantly improved perfor-
mance for HyenaDNA (p <0.001), while the improvement for
Caduceus-Ph was not statistically significant (Supplementary Table 4).

The distribution of gene prediction correlations showed similar
patterns across all models (Fig. 3). While average correlations were
modest, certain genes were consistently predicted with substantially
higher accuracy, with correlations exceeding 0.4 and reaching up to
0.9. This indicates that while zero-shot embeddings may not capture
the regulatory complexity for all genes, they successfully identify and
model genes whose expression is tightly controlled by their local
sequence.

Analysis of the best-predicted genes revealed a remarkable con-
sistency in model performance, identifying a core set of highly pre-
dictable genes regardless of model architecture (Supplementary
Data 3). With 6k bp inputs, the gene CUTALP was consistently the top-
predictedgeneacross allfive short-sequencemodels,with correlations
exceeding 0.89. Other highly predictable genes that consistently
ranked among the top 10 across these models included CPNE1,
NT5C3B, DDX11, and PEX6. For the long sequence models, which ana-
lyzed an extendedgenomic context of up to ~196 Kbp,DDX11 andHLA-
DRB5 consistently achieved the highest correlations across all three
models. Other genes showing strong predictability with longer
sequences included DHFR and CD151. Of particular relevance to blood
tissue, CD151 is a tetraspanin familymember that plays important roles
in platelet activation and aggregation, making it highly relevant to
blood function20. DHFR (dihydrofolate reductase) is essential for DNA
synthesis and is targeted by several drugs used to treat blood
disorders21, further highlighting the biological relevance of these
predictions.

While our results identify specific genes whose expression pat-
terns appear more predictable from sequence data, the overall per-
formance of these zero-shot embeddings remains modest. Therefore,
these findings should be considered preliminary indicators of model
capabilities.

Variant effect quantification
Our analysis of zero-shot embeddings for variant effect prediction
reveals that model performance is highly task-dependent, creating a
clear distinction between performance on pathogenic variant identi-
fication, and putative causal QTL classification. For the task of distin-
guishing pathogenic from common SNPs, the transformer-based
foundation models NT-v2 and Caduceus-Ph surprisingly emerged as
the top performers. NT-v2 was particularly dominant, achieving the
highest average test AUC of 0.73 and the largest effect size (Cohen’s d:
0.88), substantially outperforming all other models, including those
trained on functional tracks like Enformer (AUC: 0.69, Cohen’s d: 0.73)
and Sei (Table 5). This suggests that the pre-training objectives of these
specific foundation models are exceptionally well-suited for capturing
the subtle, sequence-level patterns that differentiate pathogenic
variants.

In contrast, for the putative causal QTL variant effect benchmark
to distinguish putative causal QTLs from non-causal variants, models
explicitly trained to predict genomic tracks (AlphaGenome22,
Enformer23, and Sei24) held a clear and consistent advantage (Table 6).
AlphaGenomewas the standoutmodel, achieving the highest AUC and
Cohen’s d scores across all four QTL types (e.g., AUC=0.80 for sQTLs,
AUC =0.86 for ipaQTLs). Enformer and Sei also significantly

Table 4 | Overall performance of DNA foundation models in
gene expression prediction using random forest regression

Model Input
Sequence
Length

Average Predic-
tion Correlation

Average Pre-
diction MSE

DNABERT-2 6000bp 0.121 0.236

NT-v2 6000bp 0.122 0.236

HyenaDNA 6000bp 0.122 0.235

Caduceus-Ph 6000bp 0.123 0.234

GROVER 2048bp 0.114 0.233

HyenaDNA-450K* 196Kbp 0.137 0.226

Caduceus-Ph
Long
Sequence Input*

131Kbp 0.127 0.227

Enformer* 196K bp 0.129 0.227

Averageprediction correlation across all genes and average predictionMSE across all genes are
recorded. *Note that for long input sequences, only a subset of human genes are involved in
analysis.

Article https://doi.org/10.1038/s41467-025-65823-8

Nature Communications |        (2025) 16:10780 6

www.nature.com/naturecommunications


outperformed the general DNA foundation models; for example, in
eQTL prediction, Enformer achieved an AUC of 0.77, compared to the
best-performing general foundation model, Caduceus-Ph, at 0.65. A
notable finding for both Enformer and Sei was that their internal hid-
den states were often as predictive as their final processed output
tracks; for instance, in sQTL prediction, Sei’s hidden state repre-
sentation achieved an AUC of 0.65 compared to 0.63 for its output
tracks.

Among the general-purpose foundation models, Caduceus-Ph
again demonstrated the most consistent and robust performance,
serving as a reliable baseline. Theperformanceof the other foundation
models was more erratic. This instability was particularly pronounced
on the QTL tasks with the smaller sample sizes (ipaQTL, paQTL and
sQTL) where several models, including DNABERT-2, HyenaDNA,
Caduceus-Ph with long sequence input, and GROVER, may yield an
average AUC slightly below 0.5. This result highlights the challenges of
benchmarking on small datasets with strict chromosome-based splits.
Our nested cross-validation design makes this variance explicit: the
detailed results for each test chromosome group (Supplementary
Data 4) reveal that performance on these small datasets is highly
sensitive to the choice of holdout chromosomes.

Finally, a direct comparison between the short- and long-
sequence versions of HyenaDNA and Caduceus-Ph did not suggest a
clear advantage for using longer inputs in this context. For the
pathogenic SNP task, the short-sequence version of Caduceus-Ph
(AUC: 0.70) clearly outperformed its long-sequence counterpart (AUC:
0.62). This suggests that for a single nucleotide change, a larger
genomic context may dilute the local signal when using this embed-
ding subtraction methodology.

Pre-training experiment
We investigated the impact of pre-training dataset diversity by re-
pretraining HyenaDNA on DNABERT-2’s multi-species dataset com-
prising 135 species across 6 taxonomic categories, and examined their
performance on the 57 sequence classification benchmark datasets.
We maintained the hyperparameters comparable to the original
HyenaDNA-1K checkpoint referring to their descriptions, though our
implementation may slightly differ from the original model’s training
scale in number of training steps and batch size as these were not
clearly stated.

The newly pre-trained model, which leverages the diverse multi-
species dataset, demonstrated significant performance gains over the
original human-genome-trained HyenaDNA-1K on most datasets. It
achieved statistically significant improvements in 14 of the 49 eval-
uated datasets, particularly in areas requiring cross-species general-
ization and diverse epigenetic pattern recognition (Supplementary
Data 5). For instance, in human epigenetic modification tasks, the AUC
for 5mC detection increased from 0.707 to 0.749, and in the cross-
species human versus worm genome classification, the AUC improved
from 0.968 to 0.984. This advantage also extended to multi-species
epigenetic datasets such as C. elegans 4mC detection and various
promoter identification tasks. On the other hand, the original
HyenaDNA-1K achieved superior AUC on 3 out of the 49 datasets,
related to human enhancer identification, human open chromatin
region identification and yeast epigenetic mark prediction. This sug-
gests that specialized human genome pre-training still retain a few
benefits from certain tasks.

These findings provide evidence that the architecture of
HyenaDNA is fundamentally robust on training datasets, and multi-
species pre-training may enhance its generalizability for diverse
tasks and cross-species generalization. Our results suggest that multi-
species pre-training should be considered a critical design
choice. Future DNA foundation models can benefit from exploring
optimal species sampling strategies and taxonomic diversity in pre-
training.

Fig. 3 | The distributionofprediction correlationbetweenpredicted and actual
gene expression values. The histograms showing the prediction correlation on all
genes using (a). HyenaDNA and (b). HyenaDNA-450K which takes longer input
sequences (196 K bps). Bothmodels demonstrate similar distribution patterns with

a slight positive skew in the histogram, indicating that while most genes have
modest predictability, a subset of genes shows stronger sequence-expression
relationships.

Table 5 | Overall performance of DNA foundationmodels and
other genomic models in the pathogenic versus common
variant effect quantification task

Model AUC Cohen’s d

Sei, hidden states* 0.6598 0.5573

Sei, output tracks* 0.664 0.6046

Enformer, hidden states* 0.688 0.7269

Enformer, output tracks* 0.6662 0.6542

DNABERT-2 0.538 0.1338

NT-v2 0.7319 0.8813

HyenaDNA 0.612 0.3952

HyenaDNA-450K, long
sequence

0.6261 0.4493

Caduceus-Ph 0.6959 0.7354

Caduceus-Ph, long sequence 0.6243 0.4615

GROVER 0.6029 0.3693

All metrics represent the average test AUC and Cohen’s d values calculated across three
independent test sets, each defined by a distinct group of chromosomes in our nested cross-
validation framework. Non-DNA foundation models are annotated with an asterisk (*). Bolded:
top 2 highest (absolute) value.
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TAD region recognition
A key question for foundation models is whether their internal repre-
sentations, such as self-attention patterns, learn biologically mean-
ingful, higher-order genomic structures without explicit training. To
investigate this, we assessed NT-v2’s capability to recognize topolo-
gically associating domains (TADs) by analyzing attention patterns in
the self-attentionmechanism. Unfortunately, such analysis is currently
constrained by model architecture; other foundation models eval-
uated in our study either lack accessible attention mechanisms (Hye-
naDNA and Caduceus-Ph), accessible attentionmatrices (DNABERT-2),
or have input length limitations that preclude meaningful analysis of
large genomic structures like TADs. We processed 1500 TAD-centered
sequences and 1500 randomly selected background sequences
through NT-v2, extracting and averaging attention matrices across all
layers and attention heads. The attention weight at any coordinate
(x, y) indicates how strongly the query token at position y attends to
the key token at position x during self-attention computation. There-
fore, if NT-v2 can recognize TAD structures inherently, we would
expect the attention weights to increase in the central region
(approximately token positions 300–700), resulting in a vertical band
of positive values in the average attention matrix when key tokens fall
within the TAD region. But for random background sequences, the
average attention matrix would not show any clear pattern. Hence the
differences between these two attention matrices will also show a
vertical band.

Supplementary Fig. 2 displays the heatmap of the difference
between attention matrices for TAD-centered versus background
sequences. We observed no distinct patterns in the attention differ-
ence matrix. The heatmap shows predominantly uniform values near
zero, with only minimal variation along the diagonal where tokens
attend to themselves. This suggests that NT-v2’s self-attention

mechanism does not recognize TAD boundaries without specific
fine-tuning.

Our analysis represents the current extent of attention mechan-
ism interpretability for DNA foundation models associated with chro-
matin structures, and reveals current DNA foundation models’
limitations on interpretability. This finding highlights a critical
challenge and a vital area for future research, and extending
such interpretability analyses is crucial for moving these models from
“black box” predictors to tools that can generate essential biological
insights.

Runtime analysis
Our runtime analysis revealed computational efficiency profiles across
the DNA foundation models on a single A100 GPU (Fig. 4). Despite the
logarithmic scale of sequence lengths, none of the models demon-
strated clear quadratic scaling, suggesting that attention computation
was not the dominant factor within our experiment of batch size equal
to 1. However, testing with larger batch sizes to potentially observe
quadratic scaling would require multiple and more powerful GPUs,
which we leave for future work. HyenaDNAmodels exhibited themost
favorable scaling characteristics, particularly for longer sequences.
The HyenaDNA-160Kmodel maintained relatively stable performance
for shorter sequences (below 2K nucleotides), while HyenaDNA-1M
showed excellent scaling even at sequence lengths approaching 500K
nucleotides. This efficiency can be attributed to HyenaDNA’s archi-
tecture that leverages long convolutions with implicit parameteriza-
tion and data-controlled gating. DNABERT-2 demonstrated
competitive runtime for sequences approaching its recommended
length limit (~2 K nucleotides), beyond which we observed a dramatic
runtime increase, indicated by the spike in the orange line. NT-v2
consistently required the highest runtime across all sequence lengths,

Table 6 | Overall performance of DNA foundationmodels and other genomicmodels in QTL variant effect quantification tasks

Model eQTL sQTL paQTL ipaQTL

AUC AlphaGenome, output tracks* 0.8029 0.7147 0.7543 0.8644

Sei, hidden states* 0.7561 0.6534 0.6189 0.6071

Sei, output tracks* 0.7497 0.6276 0.6553 0.606

Enformer, hidden states* 0.7744 0.6662 0.6737 0.6919

Enformer, output tracks* 0.7699 0.6174 0.666 0.6587

DNABERT-2 0.5702 0.5795 0.5066 0.4694

NT-v2 0.6091 0.5047 0.5251 0.6019

HyenaDNA 0.6117 0.5531 0.4699 0.448

HyenaDNA-450K, long sequence 0.6027 0.5262 0.5521 0.5093

Caduceus-Ph 0.6492 0.5666 0.5082 0.5678

Caduceus-Ph, long sequence 0.6265 0.5703 0.4649 0.5203

GROVER 0.5896 0.4742 0.4494 0.4759

Cohen’s d AlphaGenome, output tracks* 1.287 0.7872 0.9824 1.6347

Sei, hidden states* 1.0335 0.553 0.4538 0.4126

Sei, output tracks* 1.0116 0.4936 0.5503 0.4227

Enformer, hidden states* 1.1102 0.6115 0.6028 0.6576

Enformer, output tracks* 1.1085 0.4129 0.5457 0.5691

DNABERT-2 0.2371 0.2825 0.024 −0.0756

NT-v2 0.3956 −0.004 0.0658 0.3837

HyenaDNA 0.3877 0.2018 −0.0768 −0.2048

HyenaDNA-450K, long sequence 0.3605 0.0757 0.2068 0.0733

Caduceus-Ph 0.5484 0.2278 0.0456 0.2324

Caduceus-Ph, long sequence 0.4913 0.2464 −0.1151 0.075

GROVER 0.319 −0.0978 −0.1393 −0.072

All metrics represent the average AUC and Cohen’s d values calculated across three independent test sets, each defined by a distinct group of chromosomes in our nested cross-validation
framework. Non-DNA foundation models are annotated with an asterisk (*). Bolded: the top two highest (absolute) performances for each task.
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~2.5 s for 100 replications, which reflects its substantially larger model
size of 500M parameters, yet the runtime is highly stable. GROVER
demonstrated the fastest runtime among all tested models for
sequences within its supported length range (2 K nucleotides), while
Caduceus-Ph-131K showed moderate performance with gradually
increasing runtime as sequence length increased.

Discussion
Our comprehensive study provides a systematic evaluation of five
state-of-the-art DNA foundation models (DNABERT-2, NT-v2, Hye-
naDNA, Caduceus-Ph, and GROVER), focusing on the quality of their
zero-shot embeddings across a diverse suite of genomic tasks. A key
strength of our benchmark is the breadth and diversity of our com-
parisons, evaluating zero-shot embeddings across numerous genomic
tasks, species, and sequence analysis paradigms, including classifica-
tion, regression (gene expression prediction), and variant effect
quantification. Our methodology, centered on using random forest
classifiers for downstream tasks, was chosen to minimize inductive
biases from complex classifier tuning, allowing a more direct assess-
ment of the embeddings themselves. It is crucial to note, however, that
direct performance comparison with results from original model
publications can be nuanced due to differences in fine-tuning strate-
gies, classifier choices, and pooling methods. A significant contribu-
tion of our study is the rigorous analysis of output pooling methods,
where we demonstrated that mean token embedding consistently and
significantly outperforms sentence-level summary tokens (average
AUC improvements of 1.4%−8.7%) and maximum pooling, offering a
clear path for similar tasks.

Our benchmark on sequence classification tasks reveals distinct
strengths and weaknesses for each model. Caduceus-Ph established
itself as the best-performing model for human genome classification,
consistently outperforming others in transcription factor binding site
prediction and promoter region identification. GROVER presented a
balanced profile, showing generalized strengths across diverse tasks,
from human epigenetic modification detection to bacterial promoter
identification. DNABERT-2 also proved a strong and consistent per-
formance, excelling notably in splice site prediction and showing
remarkable performance in yeast epigenetic mark prediction. NT-v2’s
primary strength lies in epigenetic modification detection, where it

performed well on human 5mC/6mA datasets and was the top per-
former for 4mC detection across several other species. Finally, Hye-
naDNA, while being generally modest in binary classification,
demonstrated an exceptional and distinct capability in multi-class
settings, particularly in distinguishing between different regulatory
region types. A common trend was that performance was generally
higher on human-centric tasks and for distinct genomic region classi-
fication compared to the more subtle signals of epigenetic
modifications.

The implications of our findings extend beyond technical per-
formance into biological and clinical research. The superiority of
Caduceus-Ph in human TFBSpredictionmakes it a prime candidate for
studies focused on dissecting human gene regulatory networks. The
consistent, strong performance of DNABERT-2 in tasks like promoter,
enhancer, and splice site identification positions it as a powerful and
reliable tool for understanding gene regulation in humandiseases. NT-
v2’s performance on epigenetics across species suggests its utility for
comparative epigenomic studies across diverse organisms. Further-
more, HyenaDNA’s strength in multi-class classification could be
leveraged for genome-wide annotation tasks to distinguish between
different functional elements, while its scalability makes it ideal for
analyzing large-scale genomic rearrangements. By benchmarking
these models across diverse genomic tasks, our study provides gui-
dance for researchers to select the most appropriate model for their
specific biological questions, ranging from developmental biology to
personalized medicine.

Besides classification tasks, we also evaluated DNA foundation
model performance on predicting gene expression levels from DNA
sequences, which revealed both specific strengths and notable lim-
itations of current zero-shot embeddings. While the prediction per-
formance for most genes was modest on average, we identified a
consistent subset of highly predictable genes across models, such as
CUTALP and DDX11 achieving strong prediction correlation (>0.80).
This indicates that for these certain genes, zero-shot embeddings can
effectively capture sequence-based regulatory signals. However, when
extending the input sequence context from 6K to ~196K base pairs,
the overall improvement in average prediction performance was not
uniformly substantial across all models, though some architectures
like HyenaDNA did show small gains.

Fig. 4 | Runtime comparison of DNA foundation models. The sequence lengths
range from 64 to 524,288 nucleotides, measured as total seconds for 1000 repli-
cations using batch size 1 on an A100 GPU. Dashed vertical lines indicate points

where sequence length either exceeds the supported/recommended model input
limit, or exceeds GPU memory capacity.
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A critical insight from our study is the impact of pre-training data
diversity on model performance. We investigated this by re-
pretraining HyenaDNA in the roughly identical setting, but on DNA-
BERT-2’s multi-species dataset comprising 135 species across 6 taxo-
nomic categories. The newly pre-trained model demonstrated
significant performance gains over the original human-genome-
trained HyenaDNA, achieving statistically significant improvements
in 14 of 49 evaluated datasets, particularly in cross-species general-
ization and epigenetic pattern recognition. However, the original
human-genome pre-trained model retained advantages in 3 datasets,
suggesting that species-specialized pre-training data can still retain
benefits for certain tasks. These findings demonstrate that multi-
species pre-training enhances generalizability for diverse genomic
tasks and that pre-training data composition should be considered a
critical design choice for future DNA foundation models.

In a comprehensive variant effect quantification benchmark, we
observed a clear and fascinating distinction between a model’s ability
to identify pathogenic variants and its ability to predict the functional
impact of quantitative trait loci (QTLs). In the task of distinguishing
pathogenic from common SNPs, the transformer-based models NT-v2
and Caduceus-Ph were the surprising top performers, substantially
outperforming all other models, including those specifically designed
to predict functional genomic tracks like Enformer. The dominant
performance of NT-v2, which achieved an AUC of 0.73, is a profound
finding. It suggests that pre-training on a vast and diverse collection of
genomes enables the model to learn an intrinsic, fundamental gram-
mar of DNA sequence “fitness,” allowing it to recognize sequence-level
patterns indicative of deleterious mutations without any explicit
training on variant pathogenicity. In sharp contrast, on the QTL
benchmarks (e.g., eQTLs, sQTLs), the specialized models such as
AlphaGenome and Enformer were the clear and consistent winners.
This dichotomy illustrates a critical concept: foundation models have
learned a general, context-free understanding of what makes a DNA
sequence “broken,” but specializedmodels excel at understanding the
specific, context-dependent regulatory grammar that determines
whether a variant is “functional” in a particular tissue.

In summary, while we focused on benchmarking zero-shot
embeddings in our current study, our findings provide several con-
crete directions for optimizing fine-tuning approaches to enhance
DNA foundation model abilities. First, our systematic comparison of
pooling methods revealed that mean token pooling significantly out-
performs summary token pooling and maximum pooling, suggesting
that downstream fine-tuning may leverage aggregated sequence
representations rather than relying on single summary tokens. Second,
our controlled pre-training experiment demonstrated that the choice
of pre-training data substantially influences model performance on
specific tasks. This finding suggests that researchers may select foun-
dation models with appropriate pre-training data distributions that
align with their target application domains prior to fine-tuning.

Our benchmark also revealed important trade-offs and limitations
of DNA foundation models. When benchmarked against a baseline
convolutional neural network, DNA foundation models showed
advantages in some human genome classification tasks but under-
performed in several multispecies and epigenetic tasks, given that we
used solely zero-shot embeddings from frozen DNA foundation
models while the CNN was fully trained on each specific task. This
highlights the balance between general-purpose pre-training and task-
specific optimization. Our comparison between DNA foundation
models and specialized genomic models (such as Enformer and
AlphaGenome in our variant effect tasks) also reveals a fundamental
trade-off between versatility and task-specific optimization. While
foundation models demonstrate remarkable adaptability, specialized
models incorporate inductive biases that can yield superior perfor-
mance within their targeted domains. This complementarity suggests
promising directions for hybrid architectures that combine pre-

trained genomic representations with task-specific components. The
limitations in interpretability were also apparent. Our TAD region
recognition experiment found no evidence that NT-v2 inherently
recognizes higher-order chromatin structures in its zero-shot atten-
tion patterns, and the lack of accessible attention mechanisms in
models like HyenaDNA and Caduceus-Ph poses further challenges.

Limitations
Despite the comprehensive nature of our analysis, we acknowledge
several limitations that warrant further exploration. First, our
sequence classification benchmarkwas relied on public datasets which
were mostly built from smaller, curated windows around regulatory
elements, rather than assays that exhaustively sample the genome.
These datasets focus on well-defined biological traits and contain
samples of genomic regions to highlight local regulatory signals.
Benchmarking on these datasets enables reliable comparisons but
inevitably captures only a part of the regulatory landscape. Conse-
quently, long-context models such as Enformer and Sei were not run
on these small-window sequences. Another limitation is that, while
fine-tuning may introduce biases in evaluating foundation models,
there is still a need to investigate the fine-tuning potential of different
models appropriately. For instance, NT-v2, with its larger size (500M
parameters) compared to other foundation models, may exhibit more
significant improvement when fine-tuned for specific applications.
Finally, exploring model ensembles that leverage the complementary
strengths of different DNA foundation models may be proven even
more effective, in addressing the diverse challenges in genomic
sequence analysis.

In conclusion, our study provides a comprehensive evaluation
framework for DNA foundation models, offering insights into their
strengths, limitations, and potential areas for improvement. The find-
ings presented here can guide researchers in selecting appropriate
models for specific genomic tasks and highlight promising directions
for future development in this rapidly evolving field.

Methods
DNA foundation language models
To evaluate DNA foundation language models comprehensively, we
identified the three most recent state-of-the-art DNA foundation lan-
guage models, including DNABERT-210, Nucleotide Transformer
version-211, HyenaDNA12, Caduceus13, and GROVER14. These foundation
models take DNA sequence as input, tokenize into sequence of tokens,
and generate embeddings of fixed dimension for each token after
passing multiple layers. In the following, we will briefly describe these
three models.

DNABERT-210 has the network architecture similar to Bidirectional
Encoder Representations from Transformers (BERT)25, which usually
contains a positional embedding layer added to input embeddings,
and a series of encoders each consisting of a multi-head self-attention
layer and a feedforward network. It is pre-trained using the masked
language modeling approach on genomes from 135 species, including
the human reference genome. DNABERT-2 tokenizes DNA sequences
by theByte Pair Encoding (BPE)method,which is an iterative algorithm
that searches for nucleotides combinations and builds the vocabulary
at the same time; it makes no assumption on fixed words and gram-
mars, so each input sequence is independently tokenizedmerelybased
on its pattern. It is worth noting that the number of tokens in the
tokenized sequence is not fixed in DNABERT-2. DNABERT-2 modifies
the architecture of BERT by using Attention with Linear Biases (ALiBi)
instead of positional embedding layer. DNABERT-2 has about 117mil-
lion trainable parameters, the output embedding dimension is 768.
There is no hard limit on the input sequence length, although the
runtime is still quadratically increasing with sequence length.

Nucleotide Transformer Version 2 (NT-v2)11 is also based on the
BERT architecture, and it is pre-trained using the masked language
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modeling approach on genomes from 850 species, including the
human reference genome. To tokenize DNA sequence, NT-v2 employs
the 6mers tokenization method that uses a sliding window of size 6
and reads every 6 nucleotides; if there are leftover elements at the
end of sequence, nucleotides will be tokenized individually into {A, T,
C, G, N}. Therefore, the number of tokens produced by the tokenizer
will be ~1/6 of DNA sequence length. NT-v2modifies BERT by replacing
the learned positional embeddings with the rotary embeddings, which
rotates the embeddings output by each attention layer based on the
token’s position, and the Swish activation without bias. These mod-
ifications reduce the number of model parameters in Nucleotide
Transformer Version 1, and thus reduce the computation cost. The
largest NT-v2 model has around 500million trainable parameters, the
output embedding dimension is 1024, and the input sequence length
limit is 12,000 nucleotides.

HyenaDNA12 differs from the architectures of DNABERT-2 and NT-
v2 by eschewing the attentionmechanism in favor of a decoder-based
architecture. HyenaDNA is pre-trained exclusively on the human
reference genome using a next nucleotide prediction approach. The
key component of this model is the Hyena operators, which integrate
long convolutions with implicit parameterization and data-controlled
gating. Benefiting from this architecture, HyenaDNA can process very
long DNA sequences with fewer model parameters than attention-
based transformer. This enables a straightforward tokenization
approach in HyenaDNA, where each nucleotide is treated as an indi-
vidual token. HyenaDNA can also perform in-context learning such as
soft-prompting12,26, and details can be found in its original article. The
largest HyenaDNA model has around 30 million trainable parameters,
the output embedding dimension is 256, and the input sequence
length limit is one million nucleotides.

Caduceus-Ph13 is a long-range DNA foundation language model
that leverages the MambaDNA architecture—an extension of selective
state space models (SSMs)—to capture the unique structural and
contextual properties of genomic sequences. It introduces two key
innovations: bi-directional sequencemodeling via the BiMamba block,
which enables the incorporation of both upstream and downstream
genomic context, and reverse complement (RC) equivarianceachieved
through a dedicated module that respects the intrinsic reverse com-
plementary nature of DNA. In our implementation, RC handling is
performedvia a post-hoc conjoining approach, simplifying embedding
extraction and facilitating the ensembling of predictions across
strands at inference time. Unlike traditional attention-based archi-
tectures, Caduceus-Ph operates at nucleotide resolution and scales
efficiently to long sequences without incurring quadratic computa-
tional overhead. The largest Caduceus-Ph configuration comprises ~35
million trainable parameters, features an output embedding dimen-
sion of 256, and maximum input sequence of 131 thousand
nucleotides.

GROVER14 is a DNA foundation language model designed to learn
the intrinsic “grammar” of the human genome by capturing both local
token properties and long-range contextual dependencies. Built on a
transformer encoder architecture akin to BERT, GROVER comprises 12
transformer layers that include multi-head self-attention, feedforward
networks, and normalization layers. Its novelty lies in the use of byte-
pair encoding (BPE) to tokenize genomic sequences—the vocabulary is
iteratively optimized over 600 cycles to balance token frequency and
capture the heterogeneous sequence composition of the genome.
Trained with a masked token prediction objective, GROVER not only
reconstructs masked regions but also develops token embeddings that
encapsulate key genomic features such as nucleotide frequency, GC
content, and sequence length. The GROVER configuration comprises
~117million trainable parameters, features an output embedding
dimension of 768. It supports an input sequence length limit of 512
tokens.Due to the variable-lengthnatureof BPE tokenswhich can range
from single nucleotides to longer 6mers, the corresponding

nucleotide sequence length can vary, typically averaging around two
thousand.

Benchmarking datasets
Sequence classification datasets. To unbiasedly evaluate the foun-
dation models, we collected and curated datasets from five distinct
sequenceclassification sources. These datasetswere selected to reflect
a wide range of potential downstream tasks, ensuring they are both
challenging and achievable. While these datasets are not genome-wide
in terms of exhaustive coverage, they have been carefully curated by
focusing on sub-sampled genomic regions that capture local reg-
ulatory signals within controlled windows, eachwith specific sampling
strategies to reduce noise and redundancy.

DNase-I hypersensitive sites detection27: The datasets used in the
study consist of positive DNA sequences for the 280 Dnase I hyper-
sensitive sites (DHS), and negative sequences for the 737 non-Dnase I
hypersensitive sites, originally collected by ref. 28 and has been widely
used for benchmarking the detection of DNase I hypersensitive
sites29,30. The positive sequences are experimentally identified DNase I
hypersensitive sites (DHSs),which aremarkers for open chromatin and
active regulatory elements. The 737 negative sequences are genomic
regions verified as non-DHS. Identification of the DNA sequences
containingDHS is crucial for detectingDNA regulatory regions, as DHS
is indicative of genomic regulatory regions. The datasets consist of a
curated set of human genomic regions representing a specific chal-
lenge set designed for direct comparison against prior computational
methods. sequence length ranges from 225−275 base pairs.

5mC and 6mA modifications detection in human31: We use the
two benchmark datasets to predict 5-methylcytosine (5mC) and N6-
methyladenosine (6mA)modifications in human (Homo sapiens) DNA
in this study. The datasets were originally collected by ref. 32 which
have been subsequently adopted by relevant tasks33. These datasets
consist of short, 41 bp sequences centered on specific cytosine or
adenine sites in the human genome. Both the positive (methylated)
andnegative (non-methylated) samples arederived fromexperimental
profiling studies. Sequences with high similarity were computationally
filtered out to reduce redundancy and potential bias.

Promoter identification in multiple species34: We use 8 datasets
from a study that established a benchmark for identifying promoters
across multiple species, covering 4 distinct organisms including
human (4 different cell lines of GM12878, NHEK, HeLa-S3, HUVEC), B.
amyloliquefaciens, R. capsulatus, and Arabidopsis (TATA and non-
TATA). These datasets focus on genomic regions proximal to tran-
scription start sites (TSS). The positive samples are promoter
sequences derived from experimentally-based ENCODE annotations
for human cell lines, as well as established promoter sequences for
bacterial and plant species. The negative samples for this task were
computationally generated by identifying non-promoter genomic
regions that have the highest sequence similarity to the corresponding
positive promoter sequences, creating a challenging classification
problem. Sequence lengths vary significantly, from under 100bp in
bacteria to over 2000bp in human cell lines.

N4-methylcytosine (4mC) site detection inmultiple species35: For
this task, we utilized six distinct datasets that the authors collected to
benchmark, corresponding to E. coli, C. elegans, G. pickeringii, G. sub-
terraneus,D. melanogaster, and A. thaliana, consist of 41 bp sequences
centered on potential 4mC sites. The positive samples are experi-
mentally identified 4mC sites collected from public databases. The
negative samples (non-4mC sites) were generated by randomly sam-
pling sequences from the respective genomes. It is important to note
that while 4mC is a well-establishedmodification in prokaryotes like E.
coli and the Geobacter species, for eukaryotic species (A. thaliana, C.
elegans, D. melanogaster), 4mC site annotations are often reliant on
computational predictions rather than direct, genome-wide high-
stringency chemical mapping due to ongoing research into its
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prevalence and detection []. This distinction is important for the
interpretation of model performance on predicting sequences con-
taining 4mC sites.

Genomic Benchmarks dataset collection36: We also downloaded a
suite of datasets from the Genomic Benchmarks collection, which
provides benchmarks for classifying key regulatory elements.
The tasks from this collection include identifying promoters, enhan-
cers, and open chromatin regions in humans, as well as distinguishing
between coding and intergenic DNA and differentiating sequences
between species (human and C. elegans). For these datasets, positive
samples are derived from experimentally-validated sources like the
FANTOM5 project and the Ensembl Regulatory Build. The negative
samples consist of randomly sampled, length-matched sequences
from non-overlapping genomic regions, and sequence lengths typi-
cally range from 200 to over 2000 base pairs.

We also adopted a large collection of datasets from the down-
stream task benchmarks in DNABERT-2 and NT-v2. These datasets
cover a diverse range of tasks including promoter (proximal and core),
transcription factor binding site, splice site, and epigenetic mark pre-
diction across species like human, mouse, and yeast. The majority of
these tasks are region-specific, focusing on sequences of a few hun-
dred base pairs centered on the functional element. A common para-
digm in their construction is theuse of experimentally-derivedpositive
samples (e.g., from ENCODE ChIP-seq), while negative samples are
sometimes generated through methods like dinucleotide shuffling,
random sampling with matched GC-content, or even adversarial
example generation to increase task difficulty. Since these datasets
were originally pre-processed into specific splits, we re-shuffled them
to ensure a fair and rigorous comparison in our framework.

With all the datasets we collected, there are in total 57 datasets
included in this study, including 52 binary classification datasets and 5
multi-class datasets. A key characteristic of these 57 classification tasks
is their focuson short sequences (41 to ~2000bp), a design intended to
test local signal recognition. Detailed descriptions and our naming of
all 57 datasets can be found in Supplementary Note 1. In Supplemen-
tary Note 2, we also annotated each dataset on whether the sequences
are relied on experimentally validated or golden standard sources. The
specific training size, testing size, class label distribution, and details of
sequence lengths for all datasets used in our study can be found in
Supplementary Data 6.

To facilitate a systematic analysis, we categorized these 57 data-
sets into four distinct categories based on the nature of their respec-
tive classification tasks: (1) Human Genome Sequence Region
Classification: This category encompasses tasks such as identification
of transcription factor binding sites, promoter regions, and other
functional elements within the human genome. (2) Multi-Species
Genome Sequence Region Classification: These tasks involve distin-
guishing genomic regions across different species, for example, dif-
ferentiating between human and Caenorhabditis elegans (worm)
genome sequences. (3) HumanGenomeEpigenetic Trait Classification:
This group includes tasks related to identifying epigenetic modifica-
tions specific to the human genome, such as detection of N4-
methylcytosine (4mC) sites. (4) Multi-Species Genome Epigenetic
Trait Classification: These tasks focus on identifying and classifying
epigenetic traits across multiple species’ genomes. We present and
analyze our findings separately for each of these four dataset cate-
gories, allowing for a comprehensive assessment of the models’ cap-
abilities and limitations in various genomic classification scenarios. It is
important to note that the input sequences for all 57 classification
datasets, which range from 41 bp to ~2000bp, fall well within the
maximum input length of all foundation models evaluated in these
tasks. Therefore, a direct comparison was possible without sequence
truncation, ensuring that each model was evaluated on identical, bio-
logically relevant inputs for these tasks.

Gene expression prediction datasets. To evaluate DNA foundation
models in predicting gene expression, we used the GTEx v8 dataset37,
whichprovides gene expressionmeasurements acrossmultiple human
tissues. We focused on whole blood (610 subjects, 21,004 genes) tis-
sue. We generated subject-specific DNA sequences by incorporating
individual genetic variants from whole-genome sequencing VCF data
into the human reference genome (GRCh38/hg38). For each gene, we
extracted sequences spanning 3000 base pairs upstream and down-
stream of the transcription start site (TSS), resulting in ~6000-
nucleotide sequences that include subject-specific SNPs and insertion/
deletion variants. The variants have been phased so both alleles are
generated. Consequently, for each gene we have generated {subject-
specific sequences on both alleles, subject gene expression} pairs.

To consider models which are capable of processing longer
sequences, we created an extended-context dataset with sequences
spanning TSS ± 98K base pairs. We included sequences of such length
for two key reasons: (1) Some versions ofHyenaDNA andCaduceus can
process sequences significantly longer than 6000bps, and we wanted
to assess whether they generate improved zero-shot embeddings with
extended genomic context; and (2) Enformer23, another transformer
model that has demonstrated success in predicting gene expression,
accepts sequences up to 196,608 bps long, allowing us to benchmark it
against DNA foundation models.

For each gene, we regressed the gene expression on covariates
provided by GTEx v8, including demographic variables such as sex,
probabilistic estimation of expression residuals (PEER) factors, and top
genotype principal components used to account for population
structure37. The residuals from this regression, representing covariate-
corrected gene expression levels, served as the quantitative trait for
our prediction models to learn from the sequence data. The 6000bps
dataset includes all genes. For the long sequence dataset, due to
computational constraints, we randomly selected 1000 genes and
excluded genes not present in whole blood tissue dataset or genes
whose TSS ± 98K exceed chromosome boundaries, making the final
total of 768 genes.

Variant effect quantification datasets. To directly assess the capacity
of DNA foundation models to represent genetic variants within their
zero-shot embeddings, we developed two distinct benchmarks: one
focused on differentiating pathogenic from common variants, and
another on identifying functional quantitative trait loci (QTLs).

Our first benchmark utilizes data from the Genomics Long-Range
Benchmark38, which provides two distinct categories: pathogenic sin-
gle nucleotide polymorphisms (SNPs) associated with disease pheno-
types and common SNPs frequently observed in the population.
Following the methodology of generating paired sequences, we con-
structed a reference sequence and a corresponding alternative
sequence for each SNP by replacing the central nucleotide. This pro-
cess resulted in a dataset of {reference sequence, alternative sequence}
pairs, where each pair corresponds to a single SNP and is labeled as
either pathogenicor common. To accommodatemodelswithdifferent
input length capabilities, we created two versions of the dataset. For
models supporting longer contexts, we extracted 196,608 bp
sequences, resulting in 22,222 pathogenic and 17,374 common
sequences. For models with shorter input limits, we used 6000bp
sequences, yielding 22,239 pathogenic and 17,398 common sequen-
ces. In both cases, a small number of SNPs were omitted where the
required sequence length exceeded chromosome boundaries. The
purpose of this benchmark is to evaluate if the change between the
reference and alternate allele embeddings is distinct enough to dis-
tinguish pathogenic from benign genetic variation.

As a second benchmark, we adopted the curated putative causal
QTL dataset from the Borzoi39 study. The dataset contains high-
confidence causal variants, was originally derived from GTEx v8 and
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has been statistically fine-mapped. We focus on QTLs from the whole
blood tissue. In total, there are 1896 expression QTLs (eQTLs),
540 splicing QTLs (sQTLs), 116 intronic-polyadenylation QTLs
(ipaQTLs), and 142 polyadenylation QTLs (paQTLs). A key strength of
this dataset is its rigorously constructed negative set, where each
putative causal QTL is paired with a carefully matched non-causal
variant based on characteristics such as distance to the relevant
functional site and the expression level of the associated gene. For
each variant, this resulted in a {reference sequence, alternative
sequence} pair, labeled according to its specificQTL classification (e.g.,
eQTL, sQTL) or as a non-causal variant. Similar to the pathogenic
versus common SNP benchmark, we constructed sequence datasets of
both long (196,608 bp) and short (6000bp) sequences, again filtering
out a small number of SNPs due to chromosome length limits.

TAD region dataset. To evaluate DNA foundation models’ ability to
recognize topologically associating domains (TADs), we utilized the
processed dataset of TAD boundaries measured in IMR90 cells fol-
lowing the Enformer study23. The dataset contains TAD regions of
2400 base pairs across the human genome, each with an estimated
boundary strength score reflecting the magnitude of interaction
changes at the boundary. We filtered the dataset to include only TAD
regions with boundary strength in the top 5%, and then selected 1500
TAD regions with the strongest boundaries, similar to the workflow in
Enformer study. For each selected TAD region, we extracted 6000bp
sequences from the human reference genome, positioning the
2400bp TAD region in the center with flanking context on both sides.
This generated a total of 1500 TAD-centered sequences. As a control,
we randomly sampled 1500 background sequences of identical length
(6000bp) from the reference genome, representing genomic regions
without known TAD boundaries. This balanced design allowed for
direct comparison between TAD-centered sequences and background
sequences.

The objective of this dataset was to compare the attention
matrices generated by foundation models when processing TAD-
centered sequences versus background sequences. Since NT-v2 is the
only model in our evaluation that both returns attention matrices and
supports sufficiently long input sequences, we focused exclusively on
NT-v2 for this task.

Benchmarking methods
Sequence classification benchmark. For each classification task, we
first established a clear data partitioning strategy. We maintained the
training and testing splits from the original works where they were
available and clearly defined. For datasets lacking pre-defined parti-
tions, we applied a random 70:30 split for training and testing. For
datasets adopted from the downstream taskbenchmarks inDNABERT-
2 and NT-v2, we performed a new random 70:30 split maintaining the
original class label distributions, ensuring a standardized and fair
comparison across all models in our framework. This re-shuffling is
always performed unless there was clear evidence that the original
datasets were not manually processed by the authors of DNA foun-
dation models. It should also be noted that due to the pre-processed
nature of many classification datasets lacking complete chromosomal
information, a uniform whole-chromosome holdout strategy was not
feasible.

On the choice of supervised classifiers, we focus on classifiers that
require minimal hyperparameter tuning to ensure that performance
reflects the quality of DNA foundation model embeddings rather than
classifier optimization. Additionally, we select classifiers that inher-
ently handle high-dimensional inputswithout requiring dimensionality
reduction, as such preprocessing introduces another layer of tuning
and potential confounding. Therefore, we included random forest40,
Naïve Bayes, and elastic-net logistic regression. During training, we
performed 5-fold cross-validation that divides the training set into

non-overlapping train-validation pairs for hyperparameters tuning,
and then reported the testing performance on the test set. The
hyperparameter grids for all these classifiers are detailed in the Sup-
plementary Table 5. We evaluated model performance on the test set
using AUROC (AUC) and accuracy. AUC serves as our primarymeasure
of performance throughout this work, with the accuracy providing
supplementary information.

On the choice of baseline models for comparison against DNA
foundation models, we noted that the short-sequence nature of the
benchmark datasets is by definition incompatible with genomic
models requiring longer andfixed-length inputs, suchasEnformer, Sei,
and AlphaGenome. Forcing these short sequences into a long-context
model via excessive ‘N’paddingwould create additional artificial signal
structures to handle. Therefore, to establish a relevant, task-specific
baseline, we implemented a simple CNN consisting of three convolu-
tion layers with pooling and a classification head. The CNN archi-
tecture takes 5-dimensional one-hot encoded input corresponding to
nucleotides A,T,C,G,N and comprises three 1D convolutional layers
with 64, 128, and 256 channels respectively, max pooling after the first
two layers, adaptive global max pooling, and a final linear layer for
classification. Unlike the foundation models where embeddings
remained frozen during training, the CNN was trained directly on one-
hot encoded DNA sequences with all parameters updated during
training. This comparison aimed to identify when pre-trained DNA
foundation models could outperform task-specific neural networks.

To evaluate statistical differences in performance between mod-
els, we applied the DeLong’s test41 for comparing AUC values. For each
dataset (task), pairwise comparisons were conducted between all
model pairs using one-sided tests with a significance threshold of
α = 0.01. A model’s performance was considered significantly better
onlywhen its AUC valuewashigher and the corresponding test yielded
p <0.01. For the five datasets involving multi-class classification tasks,
where DeLong’s test become less adaptable, we used classification
accuracy as the primary metric instead.

Sequence classification benchmark: pooling methods. For our
model-wise comparison in sequence classification benchmark, we
ensured fair evaluation by using the same pooling method across all
models. However, given the lack of comprehensive studies on optimal
pooling methods for DNA foundation models, we also conducted a
systematic comparison of different pooling methods for each indivi-
dual model. In foundation language models, output pooling methods
refer to techniques for generating a single, fixed-dimensional embed-
ding to represent an entire sequence25. Despite their importance, there
has not yet been a comprehensive study on which output pooling
methods are most effective for DNA foundation models. All DNA
foundation models in this study create additional special tokens dur-
ing tokenization, aligning with common practice in natural language
processing42–44. We focused on three common output pooling
strategies:

Sentence-level summary token method: In the original BERT
architecture, a special “CLS” token is appended to the start of every
tokenized sequence to serve as a sentence-level summary. After pro-
cessing through multiple self-attention layers, this token captures the
context of the entire input sequence. DNABERT-2, NT-v2, and GROVER
implement this approach. Similarly, HyenaDNA and Caduceus-Ph
append an end-of-sequence “SEP” token that can be used to represent
the whole sequence12,13.

Mean poolingmethod: This approach calculates the average of all
non-padding token embeddings in the sequence to create a unified
representation. This potentially captures information from all parts of
the sequence equally.

Maximum pooling method: This method selects the maximum
value across each dimension from all token embeddings, potentially
highlighting the most salient features.
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For these comparisons, we employed the same statistical testing
framework described earlier, using the DeLong’s test with a sig-
nificance threshold of 0.01 to determine significant differences in
performance.

Gene expression prediction benchmark. To evaluate DNA founda-
tion models in predicting gene expression, we employed a regression-
based approach using data from the GTEx v8 dataset. As described in
the dataset subsection, we worked with two sequence lengths: shorter
6000nucleotides (applied to all 610 subjects and all 21,004 genes) and
longer sequences of up to 196 Knucleotides (applied to a subsampleof
768 genes).

For the shorter sequences, we generated zero-shot embeddings
using DNABERT-2, NT-v2, HyenaDNA, Caduceus-Ph, and GROVER. Due
to GROVER’s architecture, its input is limited to 512 tokens generated
via Byte Pair Encoding (BPE). Since the average BPE token length is
approximately four nucleotides, this corresponds to an input of
roughly 2048 base pairs. To accommodate this, we extracted the
central 2048 bp from each 6000bp sequence, ensuring the TSS
remained centered. GROVER’s performance on this shorter input was
then directly compared against the other models that utilized the full
6000bp sequence. For the longer sequences, we generated embed-
dings using HyenaDNA-450K, Caduceus-Ph, and Enformer. Caduceus-
Ph was provided with the central 131 K nucleotides due to its input
length limit. For Enformer, we used themodel’s final hidden state as its
sequence embedding and performed mean pooling over all regions.
For each subject and gene across all models, we first generated zero-
shot embeddings on both alleles separately, then calculated the mean
of these embeddings to represent the joint genetic information from
the two alleles.

Since gene expression is represented as a continuous value, we
approached this as a regression task. We experimented with random
forest and XGBoost45 as regression models. For each gene, we train a
separate regression model, with the subjects split into training and
testing sets at a ratio of 75:25, respectively. During training, we per-
formed 5-fold cross-validation using mean squared error as the opti-
mization metric for hyperparameter tuning, with the complete
hyperparameter grid detailed in Supplementary Table 6. This regres-
sion framework was applied to the whole blood tissue with 610 sub-
jects and 21,004 genes.

For evaluation, we used both mean squared error (MSE) and
Pearson correlation coefficient between predicted and actual expres-
sion values for each gene, which quantifies how effectively each DNA
foundation model could capture the genomic features that influence
gene expression levels. We conducted multiple comparative analyses:
First, we compared performance metrics between different DNA
foundation models on short sequences to assess their relative effec-
tiveness. Second, we compared metrics between Enformer and DNA
foundation models on longer sequences to evaluate the benefits of
specialized architectures. Third, we performed paired comparisons on
the same genes between HyenaDNA (shorter sequences) versus Hye-
naDNA-450K (longer sequences), and Caduceus-Ph on shorter versus
longer sequences, to determine whether extended genomic context
improves prediction accuracy. To assess statistical significance in
these comparisons, we applied the paired Wilcoxon signed-rank test,
which allows for robust non-parametric comparisonof paired samples.
Additionally, we identified and analyzed the subset of genes that were
best predicted by each model to understand potential model-specific
strengths in capturing particular genomic features or regulatory
mechanisms.

Variant effect quantification benchmark. To directly assess the
capacity of DNA foundation models to represent genetic variants
within their zero-shot embeddings, we developed a unified robust
quantitative framework. Our general methodology, inspired by the

Enformer23 study, was to first compute a unified effect vector for each
variant by subtracting the zero-shot embedding of the reference
sequence from that of the alternative sequence (embedding(alt) -
embedding(ref)). This standardized approach was applied across all
models in our comparison, including the general DNA foundation
models (DNABERT-2, NT-v2, GROVER, HyenaDNA, Caduceus-Ph), as
well as Sei24, Enformer23, and, AlphaGenome22. We then trained a ran-
dom forest classifier on these high-dimensional effect vectors to dis-
tinguish between the variant labels (e.g., pathogenic vs. common).

To prevent data leakage from effects such as linkage dis-
equilibrium, we employed a strict chromosome-based holdout strat-
egy for evaluation. However, recognizing that a single arbitrary
chromosome split could lead to high variance in performance esti-
mates, especially for smaller datasets like ipaQTL and paQTL, we
implemented a nested cross-validation scheme to ensure a more
robust and stable evaluation. We established three distinct test sets
comprised of non-overlapping chromosome groups: Group 1 (chro-
mosomes 3, 6, 9, 12, 16, 18, 19, 21), Group 2 (chromosomes 2, 5, 11, 14,
17, 20, 22, and X), and Group 3 (chromosomes 1, 4, 7, 8, 10, 13, 15). For
each of these three main folds, the corresponding group served as the
test set. The remaining chromosomes served as a training-validation
set, on which we performed a 4-fold inner cross-validation, also par-
titioned by chromosome, to tune the random forest hyperparameters.
Once the optimal parameters were selected, the classifier was
retrained on the entire training-validation set and evaluated on the
held-out test chromosomes. The final reported test AUC andCohen’s d
scores are the average of the performances across these three inde-
pendent test sets.

For the short sequence (6000bp) datasets, we compared DNA-
BERT-2, NT-v2, GROVER, Caduceus-Ph, HyenaDNA, and Sei. Due to
model-specific constraints, GROVER received the central 2048
nucleotides and Sei received the central 4096 nucleotides. For Sei, we
evaluated two distinct representations: (1) its direct output across
21,907 predictive tracks, and (2) its final hidden state (dimension
15,360) after the spline transformation layer. For the long sequence
(196,608 bp) datasets, we compared Caduceus-Ph, HyenaDNA (450K
checkpoint), and Enformer, with Caduceus-Ph using the central
131,072 nucleotides. For Enformer, we assessed both its final hidden
state and its 5313 human-specific output tracks. For the long-sequence
QTL datasets, we also included AlphaGenome, providing it the central
131,072 nucleotides of the input and averaging its output tracks over
the central 2048 bp to derive the effect vector.

For all experiments, no dimensionality reduction was performed
on the effect vectors. However, to ensure stable and robust training for
models generating relatively high dimensional embeddings (e.g., the
hidden states of Sei and Enformer), we adjusted the hyperparameter
search space for the random forest. Specifically, we removed the “sqrt”
option from the max features tuning grid (Supplementary Table 7),
thereby prioritizing the more restrictive “logarithm” option. This
standard practice for high-dimensional data helps decorrelate the
trees, which stabilizes the training process, reduces the risk of over-
fitting, and ensures a more reliable performance estimate.

TAD region recognition benchmark. We assessed NT-v2’s capability
to recognize topologically associating domains by analyzing attention
patterns across TAD-centered and background sequences. We pro-
cessed 1500 TAD-centered sequences and 1500 control sequences
through NT-v2 and extracted attention matrices from all layers
and heads. For each sequence type, we averaged thesematrices across
all layers, heads, and sequences to produce composite attention
patterns.

Our analysis focused on the center 400 tokens (corresponding to
the 2400 bp TAD region) in each averaged attention matrix. We
compared attention values within this central region between TAD-
centered and background sequences to determine whether NT-v2
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naturally allocates higher attention to genomic regions containing
strong TAD boundaries.

Pre-training dataset experiment. To investigate the effect of pre-
training dataset diversity on zero-shot embedding quality, we pre-
trained HyenaDNA using DNABERT-2’s multi-species dataset. This was
made possible thanks to the HyenaDNA’s reproducible pre-training
pipeline, allowing us to pre-train themodel on different datasets while
maintaining the same training settings for fair comparison.

For this experiment, we used DNABERT-2’s multi-species dataset,
which encompasses genomes from 135 species across 6 categories,
totaling 32.49 billion nucleotide bases (approximately 12 times larger
than the human genome dataset). Since the DNABERT-2 dataset con-
tains processed sequences of 1000bps, we used the HyenaDNA
architecture with input length 1000 (HyenaDNA-1K12). We strictly
maintained the pre-training settings as specified in the original work,
including all model hyperparameters, optimizer configurations. We
roughly maintained their training steps, and batch sizes.

We compared our multi-species pre-trained model against the
official human-genome pre-trained HyenaDNA-1K on 49 of the
57 sequence classification tasks (excluding 8 datasets with sequences
>1000bps). This comparison allowed us to directly assess whether
species diversity in pre-training data improves zero-shot embedding
quality while controlling for all other variables, including model
architecture and training methodology.

Runtime benchmark. To evaluate the computational efficiency of
DNA foundation models, we measured the time required to generate
zero-shot embeddings across varying sequence lengths. Experiments
were conducted on a single A100 GPU, measuring the average forward
pass time for randomly generated DNA sequences of length 2k (k
ranging from 6−19, spanning 64 to ~500,000 nucleotides). We recor-
ded performance for each model until it reached its sequence length
limit or exceeded the A100 memory capacity.

All measurements used a consistent batch size of 1 to accom-
modate the substantial memory requirements of longer sequences. To
reduce measurement error, we performed 100 replications and
recorded the total runtime. For DNABERT-2 and GROVER, which use
Byte Pair Encoding in tokenization with variable token counts, we
estimated the number of tokens as (sequence length / 4). This
approximation may introduce slight measurement variations due to
potential sequence truncation or padding requirements.

Model configuration selection
For the DNA foundationmodels webenchmarked, we selected specific
model checkpoints based on their capabilities and our experimental
requirements. For NT-v211, we used the largest NT-v2-500M model,
which showed optimal performance in the original study. With Hye-
naDNA, we included different checkpoints for different tasks: Hyena-
160K12 for default choice of benchmarks, Hyena-450K12 in specifically
gene expression prediction and variant effect quantification, to
leverage its ability to process longer sequences, andHyena-1K12 for pre-
training experiments to match our pre-processing format. For Cadu-
ceus-Ph, we consistently employed Caduceus-Ph-131K13 across all tasks
tomaximize context length whilemaintaining efficiency. DNABERT-210

and GROVER14 only have one model checkpoint. The embedding
dimensions of all DNA foundation models are detailed in Supple-
mentary Table 8. For Enformer23, we used the widely-accepted official
PyTorch implementation46. Sei24 only has one model checkpoint. For
AlphaGenome22, we used their provided API to access the regular
model checkpoint.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed benchmarking datasets generated in this study
(excluding the Gene Expression Prediction benchmark) have been
deposited in the Hugging Face Hub under https://huggingface.co/
datasets/hfeng3/dna_foundation_benchmark_dataset. The Gene
Expression Prediction benchmark involves humanparticipant data and
is available under restricted access to protect participant privacy; raw
individual whole genome sequencing data can be obtained by appli-
cation via the GTEx Protected Data Access portal (https://gtexportal.
org/home/protectedDataAccess); the public aggregated gene-
expression releases are available at https://www.gtexportal.org/
home/downloads/adult-gtex/qtl. The original datasets used for the
sequence-classification benchmarks are available from the sources
cited in the main text. The Variant Effect Quantification (pathogenic
versus common variant) benchmark dataset is available from the
Genomics Long-Range Benchmark repository on the Hugging Face
Hub (https://huggingface.co/datasets/InstaDeepAI/genomics-long-
range-benchmark/tree/main/variant_effect_pathogenic). The QTL
benchmark files were accessed from the Borzoi paper repository
(Google Cloud Storage: https://console.cloud.google.com/storage/
browser/borzoi-paper/qtl). The TAD region recognition benchmark
files were accessed from the Basenji Hi-C repository (Google Cloud
Storage: https://console.cloud.google.com/storage/browser/basenji_
hic/insulation).

Code availability
The code used to develop the model and perform the analyses and
generate results in this study is publicly available and has been
deposited at GitHub (https://github.com/ChongWuLab/dna_
foundation_benchmark) under MIT License. The specific version of
the code associated with this publication is archived in Zenodo and is
accessible via 10.5281/zenodo.1734948447.
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