

A regularization-based adaptive test for high-dimensional generalized linear models

Chong Wu Assistant Professor Department of Statistics

Division of Biostatistics Seminar Washington University School of Medicine Dec. 18, 2020

Outline

Introduction

Problem formulation

Methods

Results

Alzheimer's disease

copyright @ Yaletown (2016)

- AD is an irreversible, progressive brain disease
- Affect 40 million people worldwide
- In 2017, the direct cost to American society is about \$259 billion (Alzheimer's Association, 2017)
- Highly heritable (Gatz et al. 2006)

Genome-wide association study (GWAS)

copyright @ John Fouts (2016)

Genome: the set of genetic information encoded in 23 chromosome pairs

- SNP: Variation in a single base pair
 - Genetic score (additive) for each SNP and a person:

$$AA = 0$$
, $AB = 1$, $BB = 2$

Scan by individual SNPs

Regress outcome (e.g., disease status) on each SNP

Figure: Manhattan plot of the University of Pittsburgh sample for genome-wide association with Alzheimer's (**1,291** cases and **938** controls; Kamboh et al. 2012)

Ways to improve statistical power

Figure: Manhattan plot of IGAP meta-analysis of Alzheimer's (17,008 cases and 37,154 controls; Lambert et al. 2013)

Ways to improve statistical power

■ Increase the sample size (meta-analysis):

Figure: Manhattan plot of a 2019 meta-analysis of Alzheimer's (N = 455,258; Jansen et al. 2019)

Ways to improve statistical power

Testing a group of SNPs jointly to both gain statistical power and enhance biological interpretation

- Gene-level analysis (the number of nuisance parameter is low); many methods have been developed
- Gene-environment interaction analysis; our focus today!

Motivations

Practical motivation: testing gene-environment interactions

Complex diseases are often caused by the interplay of genes and the environment

Theoretical motivations:

- Testing high-dim groups of parameters with high-dim nuisance parameters is largely untouched
- Existing methods hard to control Type I error rates and maintain high power

Outline

Introduction

Problem formulation

Methods

Results

Problem formulation

- Y_i is the phenotype (outcome) (i = 1, ..., n)
- Z₁,..., Z_q are the q covariates (age, gender, environmental effect, genetic effect, etc.) (high-dimensional)
- X₁, X₂,..., X_p are the p gene-environment interactions (high-dimensional)

$$\mu_i = E(Y_i | Z_1, \ldots, Z_q, X_1, \ldots, X_p)$$

Model

$$\mu_i = g^{-1}(\alpha_0 + \alpha_1 Z_{i1} + \dots + \alpha_q Z_{iq} + \beta_1 X_{i1} + \dots + \beta_p X_{ip})$$

Hypothesis of no gene-environment interaction effect

$$H_0: \beta_1 = \cdots = \beta_p = 0$$
 v.s. $H_1:$ At least one $\beta_j \neq 0$

Statistical challenges

Some SNPs are in linkage disequilibrium

- Number of SNPs (p) in a gene/pathway might be large
- Alternative hypothesis: **dense** or **sparse**?
 - Are many or only a very few $\beta_j \neq 0$?

"Dense" / "sparse" alternative

- Unknown truth: size of $P_0 = \{j : \beta_j \neq 0\}$ is $k = p^{1-\eta}$
- "Dense" alternative (e.g. $\eta < 1/2$):
 Ex: $p = 1000, \ \eta = 0.3 \Rightarrow k = 125$
- "Sparse" alternative ($\eta \geq 1/2$):

Ex: p = 1000, $\eta = 0.9 \Rightarrow k = 2$

Statistical challenge

Estimating α under the H_0 is difficult

Use a penalized regression framework:

$$\min - L(\alpha) + \lambda P(\alpha)$$

Ridge: $P(\alpha) = \sum_{j=1}^{q} \alpha_j^2$; Lasso: $P(\alpha) = \sum_{j=1}^{q} |\alpha_j|$

Lasso yields sparse but biased estimation

Outline

Introduction

Problem formulation

Methods

 Discussion 00000

Existing methods

Method	GESAT (Lin et al., Bio-	Three step procedure (Zhang and Cheng, JASA, 2017)		
	statistics, 2013)			
Test statistic	SSU + Ridge penalty	$T_{ m st} = { m max}_j rac{\sqrt{n} \hat{eta}^{DL} }{{ m sd}(\hat{eta}^{DL})}$		
Pros	Fast; easy to use	Powerful under sparse		
		alternative		
Cons	Fail to control Type I er-	Only for linear mod-		
	ror rates when <i>q</i> is large	els; Lose power under		
		"dense" alternatives		

Note: $\hat{\beta}^{DL}$ is the de-sparsified (or de-biased) Lasso: Lasso plus a one step bias correction

Review: low-dimensional situation

■ The score statistic for the *j*th SNP (ignore some constant) is:

$$U_j = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\mu}_{0i}) X_{ij},$$

where $\hat{\mu}_{0i}$ is the MLE of $E(Y_i|H_0)$

Question

How to **aggregate** the score of SNPs optimally to test the effect of a gene/pathway/region?

Adaptive sum-of-powered score (aSPU) test

Idea: construct a class of tests such that each of them will be powerful under different situations; take the minimum to maintain high power

SPU(
$$\gamma$$
) = $\sum_{j=1}^{p} U_{j}^{\gamma}$;
SPU(2) = SSU test

SPU(
$$\infty$$
) = max_{1 $\leq j \leq p$} nU_j²/ σ_{jj}

■ aSPU (Pan et al. 2014): $T_{aSPU} = \min_{\gamma \in \Gamma} P_{SPU(\gamma)}$

- $P_{\text{SPU}(\gamma)}$ is the *p*-value of $\text{SPU}(\gamma)$
- $\Gamma = \{1, 2, \dots, 6, \infty\}$

Oracle estimator

- Oracle estimator: MLE if we know which $\alpha_i = 0$
- If we know the oracle estimator, it will reduce to the low-dimensional nuisance parameter situations

Question

How to get the oracle estimator?

Our idea: using TLP to estimate nuisance parameter

Truncated Lasso penalty (TLP): $J(\alpha_j) = \min(|\alpha_j|, \tau)$ (Shen et al. JASA, 2012)

TLP consistently reconstructs the oracle estimator under some mild conditions

 TLP is a non-convex penalty. I develop an R package "glmtlp"
 Online manual: wuchong.org/glmtlp.html Introduction 0000000 Discussion 00000

Difference of convex (DC) algorithm

Estimate α by minimizing min S(α) = -L(α) + λP(α)
 DC decomposition of S(α):

$$S(\alpha) = S_1(\alpha) - S_2(\alpha)$$
$$S_1(\alpha) = -L(\alpha) + \lambda \sum_{j=1}^{q} |\alpha_j|$$
$$S_2(\alpha) = \lambda \sum_{j=1}^{q} \max(|\alpha_j| - \tau, 0)$$

Approximate the $S_2(\alpha)$, then we have

$$S^{(m)}(\alpha) = -L(\alpha) + \lambda \sum_{j=1}^{q} |\alpha_j| I(|\hat{\alpha}_j^{(m-1)}| \le \tau)$$

New test: iSPU and aiSPU

Apply the adaptive testing idea to maintain high power across different cases

Score
$$U_j = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\mu}_{0i}) X_{ij}, \quad 1 \le j \le p$$

 $\hat{\mu}_{0i} = g^{-1} (\hat{\alpha}_0^{\mathsf{TLP}} + Z_{1i} \hat{\alpha}_1^{\mathsf{TLP}} + \dots + Z_{1q} \hat{\alpha}_q^{\mathsf{TLP}})$

• iSPU(
$$\gamma$$
): iSPU(γ) = $\sum_{j=1}^{p} U_{j}^{\gamma}$

• iSPU(∞): iSPU(∞) = max_{1 \le j \le p} nU_j²/ σ_{jj}

• aiSPU:
$$T_{aiSPU} = \min_{\gamma \in \Gamma} P_{iSPU(\gamma)}$$

•
$$\Gamma = \{1, 2, \dots, 6, \infty\}$$

Asymptotic distribution under the null

Theorem

Under some mild assumptions and the null hypothesis H_0 :

Let Γ be a set of finite positive integers, $[\{iSPU(\gamma) - \mu(\gamma)\}/\sigma(\gamma)]'_{\gamma \in \Gamma}$ converges weakly to a normal distribution N(0, R) as $n, p \to \infty$

When
$$\gamma = \infty$$
, let $a_p = 2 \log p - \log \log p$, for any $x \in \mathbb{R}$,
 $Pr\{iSPU(\infty) - a_p \le x\} \to \exp\{-\pi^{-1/2}\exp(-x/2)\}$ as
 $n, p \to \infty$

■ $[{iSPU(\gamma) - \mu(\gamma)}/\sigma(\gamma)]'_{\gamma \in \Gamma}$ is asymptotically independent with $iSPU(\infty)$

Asymptotics-based method

$$p_O = 1 - \int_{\substack{s = (s_\gamma: ext{odd } \gamma \in \Gamma)' \ -T_O \leq s_\gamma \leq T_O}} N(0, R_O) ds$$

$$p_E = 1 - \int_{\substack{t = (t_\gamma: \text{even } \gamma \in \Gamma)' \\ -\infty \le t_\gamma \le T_E}} N(0, R_E) dt$$

 $p_{\min} := \min\{p_O, p_E, p_\infty\}$

$$p_{aSPU} = 1 - (1 - p_{min})^3$$

Asymptotic power analysis

$$\Pr(T_{\mathsf{aiSPU}} = \min_{\gamma \in \Gamma} P_{\mathsf{iSPU}(\gamma)} < p_{\alpha}^*) \geq \Pr(P_{\mathsf{iSPU}(\gamma)} < p_{\alpha}^*)$$

\square p_{α}^* : critical threshold under H_0 with significance level α

■ The asymptotic power of aiSPU is 1 if there exists $\gamma \in \Gamma$ such that $Pr(P_{iSPU(\gamma)} < p_{\alpha}^*) \rightarrow 1$

Asymptotic power analysis

■ Unknown truth: size of $P_0 = \{j : \beta_j \neq 0\}$ is $k = p^{1-\eta}$

 \blacksquare "Dense" alternatives ($\eta < 1/2$)

- All variables are associated and with the same effect size: iSPU(1) is asymptotically most powerful among iSPU(γ)'s
- Half variables are positively associated; the other half are negatively associated: iSPU(2) is asymptotically most powerful

• "Sparse" alternatives ($\eta > 1/2$):

- The asymptotic power of iSPU with finite γ is strictly less than 1
- $iSPU(\infty)$ is more powerful

Outline

Introduction

Problem formulation

Methods

Results

Simulation results: validation of theorem

Empirical Type I errors and powers (%) for a linear model with n = 200, p = 1000, q = 1000, and $\eta = 0.99$ Asymptotics (parametric bootstrap)

С	0	0.3	0.5	0.7
iSPU(1)	5.6 (5.4)	6.7 (6.1)	6.6 (6.3)	7.5 (7.2)
iSPU(2)	3.6 (3.3)	4.2 (5.7)	6.6 (8.2)	15.3 (18.9)
iSPU(3)	5.0 (4.8)	6.4 (5.6)	14.6 (13.5)	41.7 (40.1)
iSPU(4)	3.8 (1.8)	9.1 (7.5)	29.5 (26.4)	54.6 (52.1)
iSPU(6)	4.9 (2.2)	18.2 (13.3)	38.8 (33.8)	61.9 (58.2)
$iSPU(\infty)$	3.5 (4.6)	16.1 (18.3)	36.5 (38.7)	61.4 (61.9)
aiSPU	5.3 (4.1)	16.6 (16.5)	38.5 (38.3)	61.4 (60.1)

Power comparison under a linear model

Sparse alternative ($\eta = 0.99$)

aiSPU Discussion

Power comparison under a linear model

Type I error rates under a logistic model

Empirical Type I error rates of various tests under $G \times E$ interaction simulations with n = 2000 and various q* Inflated Type I error rates

q	25	50	100	300	500
GESAT	0.061	0.055	0.103*	0.636*	1.000*
aiSPU(Oracle)	0.067	0.049	0.052	0.057	0.047
aiSPU(TLP)	0.061	0.054	0.053	0.042	0.047

ADNI data analysis: pathway-gender interactions

- Brain development and adult brain structure differ by gender (Cosgrove et al. 2007)
- **2**14 healthy controls (Y = 1); 364 MCI subjects (Y = 0)
- Main effects: years of education, age, intracranial volume measured at baseline, gender, and genetic variants
- Bonferroni correction; 96 KEGG pathways (0.05/100 = 5 × 10⁻⁴)

 aiSPU identified one significant pathway Fructose and mannose metabolism (hsa00051, p-value = 3 × 10⁻⁴);

GESAT failed to do so (p-value = 0.016)

ADNI data analysis: gene-gender interactions

- Candidate gene study (Gene APOE)
- aiSPU identified APOE and gender interaction effects (*p*-value = 0.039)

GESAT failed to identify (p-value = 0.56)

Women who are positive for the APOE
eq4 are at greater risk of developing AD than men with this allele (Altmann et al. 2014)

Outline

Introduction

Problem formulation

Methods

Results

- Statistical inference for high-dimensional data is challenging
- Adaptive testing idea generally maintains high power across a wide range of alternatives
- Develop new testing methods and theory for testing high-dimensional groups of variables with high-dimensional nuisance parameters
- Wu, C., Xu, G., Shen, X., & Pan, W. (2020). A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models. *Journal of machine learning research*, 21, 1-67.
- http://wuchong.org/software.html

Remarks on Truncated Lasso penalty (TLP)

- Truncated Lasso penalty (TLP) is a good approximate to L₀ penalty
- Like debiased Lasso, TLP can be used for hypothesis testing for a single or a set of variables
 - Zhu, Yunzhang, Xiaotong Shen, and Wei Pan. "On high-dimensional constrained maximum likelihood inference." *Journal of American Statistical Association* 115.529 (2020): 217–230.
- TLP can also be applied to Large Causal Network
 - Li, C., Shen, X., Pan, W. (2020). "Likelihood ratio tests for a large causal network." *Journal of American Statistical Association*. 113, 1–16

Remarks on adaptive test

Adaptive testing ideas have been applied to many areas

- Theorectical work:
 - Y He, G Xu, C Wu, and W Pan. "Asymptotically independent U-statistics in high-dimensional testing." *Annals of Statistics*, accepted.
 - C Wu, G Xu and W Pan (2019) "An adaptive test on high-dimensional parameters in generalized linear models." Statistica Sinica, (29), 2163-2186.

Remarks on adaptive test

In Applications:

- In rare variant analysis: Pan, W. et al.. (2014). A powerful and adaptive association test for rare variants. *Genetics*, 197(4), 1081–1095.
- In human microbiome analysis: Wu, C. et al. (2016). An adaptive association test for microbiome data. *Genome Medicine*, 8(1), 56.
- In pathway analysis: Pan, W. et al. (2015). A powerful pathway-based adaptive test for genetic association with common or rare variants. *AJHG*, 97(1), 86–98.
- In TWAS analysis: Xu, Z. et al. (2017). A powerful framework for integrating eQTL and GWAS summary data. *Genetics*, 207(3), 893–902.

Acknowledgement

Collaborators:

- Wei Pan @ University of Minnesota Biostat
- Gongjun Xu @ University of Michigan Stat
- Xiaotong Shen @ University of Minnesota Stat

Funding:

- NIH R01GM113250, R01GM126002, R01HL105397, R01AG065636 and R01HL116720
- NSF DMS 1711226, DMS 1712717, DMS 1952539, SES 1659328 and SES 1846747

Computing resources: Minnesota Supercomputing Institute (MSI)

Thank you!

Robustness of choice of Γ

Empirical powers of aSPU with different Γ set. Γ set aSPU_1, aSPU_2, aSPU_3, aSPU_4 represent aSPU with $\Gamma_1 = \{1, 2, \dots, 4, \infty\}, \Gamma_2 = \{1, 2, \dots, 6, \infty\}, \Gamma_3 = \{1, 2, \dots, 8, \infty\}, \text{ and } \Gamma_4 = \{1, 2, \dots, 10, \infty\}, \text{ respectively.}$ We set n = 200 and p = 2000.

Application to ADNI data: validation of theorem

Comparison between the asymptotics- and the parametric bootstrap-based *p*-values for KEGG pathways

- For finite γ: if all SNPs are independent, we can apply CLT directly; use Bernstein's block to make the leading term almost independent
- For asymptotically independent: the distribution of SPU(γ) conditional on SPU(∞) is the same as the unconditional version

Details on GESAT

- $Q = (Y \mu(\hat{\alpha}^R))'XX'(Y \mu(\hat{\alpha}^R))$
- Follow a mixture of χ^2 distribution under the null
- \sqrt{n} -consistent (Knight and Fu 2000): $\sqrt{n}(\hat{\alpha}^R \alpha) = O_p(1)$ Only valid when the cov(Z) is non-negative (small q)
- Cannot control Type I error rate when q is large

Details on three-step procedure

- Desparsifying the Lasso: Lasso plus a one step bias correction
 - Three-step procedure (Zhang and Cheng, 2017)
 - Random sampling splitting: \mathcal{D}_1 & \mathcal{D}_2
 - Marginal screening based on \mathcal{D}_1
 - Testing after screening based on D_2 : $T_{nst} = \max_j \sqrt{n} |\hat{\beta}^{DL}|; T_{st} = \max_j \sqrt{n} |\hat{\beta}^{DL}| / sd(\hat{\beta}^{DL})$
 - Error term will be **out of control** for other type statistics (Sum, SSU)
 - Only apply to a linear model