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Background Methods Results Discussion

Introduction

copyright @ GWAS Catalog

■ “missing heritability” problem
■ Many genetic variants are associated with multiple traits
■ Multi-trait association tests
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UK Biobank data

copyright @ EMBL-EBI

■ Deep phenotyping data
■ 3,144 brain image-derived phenotypes (IDPs) (Elliott et al.

Nature, 2018)
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Challenges
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■ Most existing studies analyze less than ten traits jointly
■ For deep phenotyping data, we have many traits
■ Some traits are highly correlated
■ Individual-level data may not available
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Goals

Develop a new multi-trait association test that

■ enables a joint analysis of an arbitrary number (e.g.
hundreds) of traits

■ yields well-controlled Type 1 error rates
■ achieves robust high power across different scenarios
■ can apply to GWAS summary statistics
■ computationally efficient
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Model set-up

■ Suppose we have Z scores across p traits of interest for
SNP j, Zj = (Zj1, Zj2, . . . , Zjp)

■ β = (β1, . . . , βp)′ be the marginal effect sizes of the SNP j
for p traits

■ H0 : β = 0 vs. H1 : βj ̸= 0 for at least one j ∈ {1, 2, . . . ,p}
■ Under the null, Zj ∼ N(0,R), where R is the trait correlation

matrix
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adaptive multi-trait association test (aMAT)

■ Estimating trait correlation matrix R by LD score regression
(LDSC)

■ Constructing a class of multi-trait association tests (MAT)
■ Constructing an adaptive test called aMAT to maintain

robust power across different scenarios
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MAT

■ Chi-squared test: Tχ2 = Z′R̂−1Z
■ Challenge: when analyzing hundreds of traits or highly

correlated traits jointly, R̂ is often near singular
■ R̂ = UΣU′ (SVD)
■ R̂+γ = UΣ+

γ U′

■ Only keep the largest k singular values such that σ1/σk < γ

■ TMAT(γ) = Z′R̂+γ Z
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aMAT

■ There is no uniformly most powerful test
■ MAT(1) achieves high power when the first PC captures the

majority association signals across p traits
■ When most PCs have weak signals, MAT with larger γ will

be more powerful
■ TaMAT = minγ∈Γ pMAT(γ), where Γ = {1, 10, 30, 50}
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Analysis of UK Biobank brain imaging GWAS summary data

■ For illustration, we focus on the results of analyzing the
group of 58 Freesurfer volume IDPs

■ Among about 10 million SNPs, aMAT identified 801
significant SNPs, 453 of which were ignored by any
individual IDP tests at the 5× 10−8 significance level

9



Background Methods Results Discussion

Analysis of UK Biobank brain imaging GWAS summary data

■ 28 lead SNPs, located in 24 distinct risk loci
■ Among these 28 lead SNPs, 13 SNPs (46.4%) were missed

by any individual IDP tests
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Replication of aMAT-identified loci

Replicate by the ENIGMA consortium (Hibar et. al, Nature, 2015)

■ GWAS summary statistics of seven subcortical volumes in
up to 13,171 subjects

■ Among 28 lead SNPs, 13 SNPs showed nominally
significant association results (two-tailed binomial test
P = 2.2× 10−10); four loci showed genome-wide significant
association results (P = 6.3× 10−30)
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Functional annotation of genetic variants
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Functional annotation of genetic variants

■ Relevant SNPs were chromatin states 4 (33.2%) and 5
(40.0%), indicating effects on active transcription

■ Five genome-wide significant SNPs (rs10507144, rs3789362,
rs4646626, rs6680541, and rs2845871) had a high observed
probability of a deleterious variant effect (CADD score
> 20)

■ The identified genes were enriched in many GWAS catalog
reported volume related gene sets, including dentate
gyrus granule cell layer volume P = 1.5× 10−13 and
hippocampal subfield CA4 volume P = 1.5× 10−13
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Discussion

■ Multi-trait analysis is different from cross phenotype or
pleiotropy effect analysis, where the null hypothesis is at
most one trait is associated with the SNP

■ aMAT is a general framework and can be easily extended
to incorporate other multi-trait methods such as MTAG,
N-GWAMA, and HIPO

■ Codes: https://github.com/ChongWu-Biostat/aMAT
■ Manuscript:

https://www.biorxiv.org/content/10.1101/758326v1.abstract
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