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Abstract

In the past decade, the increased availability of genome-wide association studies summary
data has popularized Mendelian Randomization (MR) for conducting causal inference. MR
analyses, incorporating genetic variants as instrumental variables, are known for their robustness
against reverse causation bias and unmeasured confounders. Nevertheless, classical MR analyses
utilizing summary data may still produce biased causal effect estimates due to the winner’s
curse and pleiotropy issues. To address these two issues and establish valid causal conclusions,
we propose a unified robust Mendelian Randomization framework with summary data, which
systematically removes the winner’s curse and screens out invalid genetic instruments with
pleiotropic effects. Unlike existing robust MR literature, our framework delivers valid statistical
inference on the causal effect without requiring the genetic pleiotropy effects to follow any
parametric distribution or relying on perfect instrument screening property. Under appropriate
conditions, we demonstrate that our proposed estimator converges to a normal distribution, and
its variance can be well estimated. We demonstrate the performance of our proposed estimator

through Monte Carlo simulations and two case studies.

Keywords: Bootstrap aggregation; GWAS; Post-selection inference.

1 Introduction

1.1 Background and motivation

Drawing inferences about cause and effect lies at the core of uncovering essential scientific princi-
ples. In biological and biomedical sciences, causal inference deepens our understanding of under-

lying etiology and advances developments in disease diagnosis, treatment, and prevention. While
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observational data present unique opportunities for causal inference by employing large and rich
datasets, causal discoveries from observational studies are often susceptible to unmeasured con-
founding and reverse causation bias issues [26, 15, 17, 46]. As a remedy, Mendelian Randomization
(MR) has become a popular research design. Its popularity is not only ascribed to the fact that
MR mitigates unmeasured confounding bias by using genetic variants as instrumental variables
(IVs) to assess the causal relationship between exposures and outcomes but also credited to the
increasing availability of large-scale genome-wide association studies (GWAS) summary data on
various complex traits [46, 11, 29, 45].

However, MR with GWAS summary may still produce biased estimates of causal effects due
to several sources of bias. These include measurement error in exposure GWAS, winner’s curse
bias resulting from using the same exposure GWAS for both IV selection and effect estimation,
and most crucially, bias from including invalid IVs with pleiotropy [42]. Firstly, the effect of
IV on exposure is measured by exposure GWAS, which inherently contains measurement error.
Ignoring such measurement error can produce biased causal effect estimates, especially when the
strength of IVs is weak [54, 33]. Secondly, the practice of selecting genetic instruments based
on their estimated associations with the exposure variable from GWAS, and using the same data
for both instrument selection and estimation, can lead to biased causal effect estimates due to
the winner’s curse phenomenon [58, 57, 18]. Lastly, typical MR analyses inevitably involve some
invalid I'Vs that either directly affect the outcome or through unmeasured confounding factors—a
phenomenon known as pleiotropy [23, 52]. The nature of pleiotropy is widespread and usually
unknown or complex [52]. Failure to fully account for pleiotropy will also lead to biased causal
effect estimates.

A broad literature addresses the biases discussed above to improve the credibility of MR anal-
yses, yet no single approach can simultaneously tackle all these biases. Some methods have made
progress in addressing individual issues. For instance, [54] formally tackled the measurement error
bias in the popular inverse variance weighted estimator, while [33] proposed a randomized instru-
ment selection and Rao-Blackwellization procedure to address both measurement error bias and
winner’s curse bias. However, the validity of these methods relies heavily on the assumption that
all IVs either have no pleiotropic effects or exhibit balanced pleiotropic effects—an assumption

unlikely to hold in practice due to the unknown and complex nature of pleiotropy [52], potentially



leading to biased causal effect estimates.

To account for widespread pleiotropy, many robust MR methods have been proposed. These
methods primarily focus on addressing the issue raised by invalid IVs, but often at the expense of
neglecting measurement error and winner’s curse biases. They can be broadly categorized into two
strategies. The first strategy imposes normal mixture model assumptions on the pleiotropic effects.
By modeling the observed GWAS summary data within a joint likelihood function, these methods
simultaneously estimate the unknown parameters and the desired causal effect. Such methods
include RAPS [56], ContMix [9], MR-APSS [25], MRMix [38]. However, as demonstrated in our
simulation studies, when the normal mixture model assumption is violated, these approaches tend
to produce false positive findings or have low detection power. Moreover, incorporating procedures
to address winner’s curse bias, such as that proposed by [33], is challenging within this framework
as it may violate parametric modeling assumptions and result in an incorrect likelihood function.
The second strategy avoids imposing parametric modeling assumptions on the pleiotropic effects.
Instead, it adopts penalization methods to screen out invalid instruments with pleiotropic effects,
using only the selected valid instruments for causal effect estimation. Such methods include, for
example, cML [53] and MR-Lasso [31]. However, these methods either lack rigorous statistical
justifications or require that the selected IVs are valid and include all valid IVs (a condition we refer
to as “perfect IV screening”). For example, [53] prove that their procedure can screen out all invalid
IVs with a probability tending to one under the asymptotic regime where the number of IVs is fixed,
and the sample size tends to infinity. When this is achieved, the resulting causal effect estimate
is consistent and asymptotically normal. However, the theoretical results under this asymptotic
regime do not account for how the magnitudes of the pleiotropic effects impact the validity of
statistical inference. In fact, perfect IV screening is often unattainable when the pleiotropic effects
are small, and the differences between valid and invalid IVs in MR studies are subtle. Notably,
two-sample MR is a rapidly evolving field with numerous methodological advancements, such as

[35, 30, 19]. For comprehensive reviews of statistical methods in MR, we refer readers to [43] and
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1.2 Contribution

To bridge the aforementioned gaps in the existing literature, we propose a unified MR framework
with summary data that simultaneously addresses winner’s curse bias, bias from measurement error
in exposure GWAS, and bias from invalid IVs with pleiotropy (Section 3). Specifically, we propose
an [y constrained optimization framework that can simultaneously screen out invalid IVs, account
for measurement error, and seamlessly integrate with the winner’s removal step from [33]. Moreover,
we demonstrate that the proposed [y constrained optimization framework maintains computational
efficiency due to the special form of our objective function. Furthermore, to improve statistical
efficiency, we adopt a bootstrap aggregation procedure and use a non-parametric delta method to
perform valid inference on the final causal effect.

On the theoretical side, we provide comprehensive theoretical investigations of the proposed
method in Section 4. We prove that the final estimator in our proposed method is asymptotically
unbiased and converges to a normal distribution even in the presence of directional pleiotropy.
Moreover, different from existing theoretical analyses in robust MR, we show that our method
can deliver consistent causal effect estimates without perfect invalid IV screening; see detailed
discussion in Supplementary Material Section S.6. In brief, our theoretical investigation indicates
that our proposed method can screen out IVs with large pleiotropic effects, and the resulting causal
effect estimator remains consistent even if the selected IVs include some invalid ones with small
pleiotropic effects. These theoretical investigations better characterize scenarios where our method
performs well and demonstrate its robustness.

Benefiting from the above features in both methodological and theoretical aspects, we demon-
strate that our proposed MR framework delivers robust causal effect estimates with improved sta-
tistical power in simulated Monte Carlo experiments (Section 5) and in two case studies (Section 6).
From our simulated Monte Carlo experiments, we confirm that our proposed method outperforms
benchmark methods in terms of type 1 error rates, power, absolute bias, mean squared error, and
coverage probability in most scenarios. The results also highlight the importance of simultaneously
correcting the winner’s curse bias and accounting for measurement error bias and generic pleiotropic
effects. From our case study of negative control outcome analyses, in which the population causal

effects are believed to be zero by design, we confirm that our approach yields well-controlled Type I



error rates (Section 6.1). From our case study to identify causal risk factors for COVID-19 severity,
our approach identifies more causal risk factors than the existing approaches, and the identified

causal exposures by our proposed method have more supporting evidence.

2 Framework and challenges

In this section, we review the classical two-sample Mendelian Randomization (MR) framework with
summary data. We then revisit the pleiotropic effects, measurement error bias, and winner’s curse
bias within this framework.

Referring to the causal diagram in Figure 1, we let X denote the exposure, Y the outcome, and
U the unmeasured confounder between the exposure and the outcome. The goal of MR analysis is
to estimate the causal effect (denoted by 6) of the exposure variable X on the outcome variable Y.
However, in the presence of unmeasured confounder U, it is challenging to directly estimate 6 solely
using the information stored in X and Y. To overcome this, two-sample MR analyses incorporate
p mutually independent SNPs G4, ..., G, as instrumental variables (IVs) and estimate 6 using the
estimated association pairs {(B X ,/B\yj) 5.’:1 collected from two independent GWAS datasets, where
3 x; and /B\yj are the estimated effect sizes for IV j in exposure and outcome GWAS, respectively.
Here, genetic variant G; € {0,1,2} represents the number of effect alleles of a single-nucleotide
polymorphism (SNP) j inherited by an individual. Following the two-sample summary-data MR

literature [54, 56], we assume the following linear structural equation model:

p
U= ZgbjGj —I—EU,

j=1

p
X =Y %G, + BxvU + Ex, (1)
j=1

p
Y =Y ;G + ByuU + 0X + Ey,
j=1

where Ey7, Ex, and Ey are mutually independent random noises. Ey; is independent of (G, ..., Gp),
and Ex and Ey are independent of (G1,...,G,,U). To allow for the valid inference of the causal
effect 0, we need G; (j = 1,...,p) to be valid IVs in the sense that they satisfy the following

three conditions: (1) 7; # 0, meaning that G; is associated with X (relevance assumption); (2)



¢; = 0, meaning that G; has no correlated pleiotropic effect with ¥ (effective random assignment
assumption); (3) o; = 0, meaning that G; has no uncorrelated pleiotropic effect with ¥ (exclusion
restriction assumption).

Provided that all included genetic IVs are valid, two-sample MR analyses can deliver valid
inference on € by appropriately using information stored in two independent GWAS datasets. To
provide some justifications for this claim, we follow the causal model proposed in [37]. In particular,
in the structural equation models given in Eq (1), the total effect of SNP G on Y and the total

effect of G on X are given by:

By; = E[Y|do(G; = g; +1)] = E[Y|do(G; = g;)] = aj + Byue; + 0 - (vj + Bxvd;),

Bx, = E[X|do(G; = g; + 1)] — E[X|do(G; = g;)] = v; + Bxu ;-

For a valid IV G, when G satisfies ¢; = 0 (effective random assignment assumption) and a; = 0
(exclusion restriction assumption), the target causal effect 6 will satisfy By; = 0Bx,, where Bx, =;
and Py, = 6v;. If the relevance assumption v; # 0 is also met, we are then able to use By, and
Bx; to assist valid inference on 6, as they can be well estimated through the estimated association
pairs {(B Xj,Byj) 5-’:1 collected from two independent GWAS dataset in two-sample summary-data
MR framework.

However, in practice, due to the widespread pleiotropy in human genetics [23, 52], the effective
random assignment (¢; = 0) and exclusion restriction assumptions (o; = 0) are frequently violated,

leading to invalid IVs. In the presence of invalid IVs, the total effect of G; on Y can be expressed

as:

By, =0 -Bx,+ «; +pPyu-¢; =0 Bx; +rj (2)
—— ~—~ ——
causal uncorrelated  correlated
effect pleiotropy pleiotropy

Here, o is the uncorrelated pleiotropic effect that captures the direct effect of G; on Y, and
By - ¢; is the correlated pleiotropic effect that captures the effect of G; on Y through the pathway
G; =+ U — Y. Their combined effect, r; = a; + Byv - ¢;, represents the total effect of a genetic
variant G; on the outcome Y induced by pleiotropy. These violations make it challenging to

accurately estimate 6 using MR. If not appropriately accounted for, genetic pleiotropy can result



in biased causal effect estimates in MR analyses (see Section 5 for our simulation results).

On top of the potential bias induced by pleiotropic effects, two additional sources of bias in MR
analyses are measurement error bias and winner’s curse bias. Measurement error bias arises from
the fact that the true effect of an IV on the exposure, Sx;, is unobserved. Instead, we rely on B X
an estimate derived from exposure GWAS (I), which inherently contains measurement error, to
conduct MR. The winner’s curse bias, on the other hand, is induced by pre-selecting I'Vs that are
strongly associated with the exposure variable to meet the relevance assumption (that is, v; # 0).
This selection exercise is often based on hard-thresholding measured SNP z-scores obtained from
GWAS (I): SNP j is selected if ’BXJ- /ox;| > A, where X is a pre-specified cut-off value, and BXJ-
and ox; are estimated effect size and its standard error from exposure GWAS dataset, respectively.
The selected IVs are then used to construct downstream causal effect estimators. The selected
[V-exposure associations tend to overestimate the underlying true association effects Sx;, as the
distribution of any B x; that survives the selection is a truncated Gaussian and the post-selection
mean is no longer Bx; when commonly used Gaussian assumption on B x; is adopted. Subsequently,
by doubly using the data in GWAS (I) for IV selection and estimation, classical MR estimators are
expected to be biased and have an intractable limiting distribution, making statistical inference
problematic.

In the rest of this manuscript, we employ the following model frequently adopted in the

Mendelian Randomization literature [56, 38, 53]:
Assumption 1 (Measurement error model) (i)For any j # j', (B\%,Exj) and (B\anng/) are
mutually independent. (ii)For each j, the association pair (Byj,ng) follows

Bx; Jg(j 0

il oY 7
Byj 08x ; + 7 0 o 32/]
Furthermore, there exists a positive integer n — 0o and positive constants m and M such that

2 M 2 M .
%SUXj§?7 %So'ngﬁfOTj:L...,p.

The assumption of independent SNPs, while seemingly stringent, is grounded in established
practice in two-sample MR analyses [54, 56, 33]. This approach helps ensure that each selected SNP

represents a signal from a unique genetic locus, thereby mitigating potential confounding effects



from LD and facilitating clearer interpretation of causal effect estimates. We acknowledge that
alternative cis-MR methods such as Transcriptome-Wide Association Studies (TWAS) [21, 50] and
Proteome-Wide Association Studies (PWAS), effectively utilize correlated SNPs, particularly for
investigating relationship between omics and complex traits. However, as the reviewer suggested,
when inferring causal relationships between complex traits/diseases (such as the two case studies in
Section 6), using independent IVs from the whole genome is typically efficient enough and simple
to implement. This strategy is also widely adopted in the literature. Therefore, in line with this
common practice, we adopt the independence assumption. To ensure independent IVs, we apply a

sigma-based LD pruning method [33].

3 Methodology

3.1 Measurement error correction and invalid IV screening

To estimate the causal effect 0, a straightforward approach is to replace the population association
effects with their empirical estimates from GWAS in the causal structure equation in (2). Given that
all population associations are measured with error in GWAS, the sample analogue of the structure

equations can be represented as the following two-stage regression model with measurement errors:

~ -~

ﬁyj = . 4 , ﬁX]' + Ty + v, BXJ' = /BXJ‘ + Uj,
y target Y N
response g " true unknown  noise covariates are
parameter  .,yariate  parameter measured with error

where v; and u; are centered noises.

To operationalize an accurate estimate of 6 using the above two-stage least squares model, we
first consider a situation where a set of IVs with Bx; # 0 (denoted as §) is known. Our method does
not require S to be known, and we will discuss the selection of § and the practical implementation

of our algorithm in the next subsection. With a known S, we propose estimating 6 by solving the



following constrained optimization problem:

. (By, — 0+ Bx, —15)? 0% - 0%,
min (0, {rj}jes) = Y L(0,r)) £ g Y ),
i jes jes Y; jes Y
S.t. Z ]l(rJ:O) =. (3)

JES

Intuitively, the objective function above is a bias-corrected least squares function designed to ac-
count for measurement error, subject to the constraint that the adopted IVs for estimating 6 are
valid. In the following, we will show that the optimization problem above not only accounts for the
measurement errors in B\ x; but also accurately identifies invalid IVs with r; # 0. This is achieved
with computational efficiency, even when an lg-type constraint is adopted. As a result, the solution

of this optimization problem provides an accurate estimate of 6.

Unmeasured
confounder

Genetic ..
v a;

ows  Py=Im&X~G)

GWAS (I fy =m@ ~ Gp)

Figure 1: The causal diagram and GWAS (I) and (II) summary data adopted in the two-sample
MR. The corresponding causal effect for each pathway is labeled near the directed edge.

To start with, when the set of IVs with r; = 0 is known, the solution of the above optimization

problem provides an unbiased estimate of 6. As in this case, we have

. 1 By, —0-Bx,)2  1=0-0%,
L(6) émrlvnl(e, {Tj}jes) = 52 . 2 — - 52072]
’ jev Y; jev Y;

We can verify that L(6) is unbiased for the weighted least squares loss function in the sense that
E[L(9)] = E[Zjev(ﬁyj -0 BXj)z/(2a)2/j)]. This suggests that its minimizer is unbiased for the
causal effect 6.

Next, as the set of IVs with r; = 0 is unknown, Problem (3) incorporates an lyo-type constraint



to screen out invalid IVs. While classical [p-type optimization problems are solved by their convex
relaxations, this technique does not apply to our problem due to the inclusion of a measurement
error bias correction term in our objective function (that is, the term 3 ;o 62 Ug(j / U%,j Lir,=0))-
To address this issue, we propose an iterative algorithm that mimics block coordinate descent and
guarantees the decay of our objective function in Algorithm 3; see justification in the Supplementary
Material Section S.1.

Lastly, the number of valid IVs v is unknown and requires tuning. To choose the final set of

valid IVs, we propose a generalized Bayesian Information Criteria (GBIC), that is:
GBIC(v) = —21(6(v), {?j(v)}jeg) +kp-(s—v), s=|[S|,

where k, = log(n), and choose the final set of valid IVs by minimizing the GBIC. The proposed
GBIC with k, = log(n) is different from the classical BIC criteria that adopts r, = log(sy).
The reason for this choice is that the classical model selection consistency result of the BIC is
established in the asymptotic regime with fixed sy. As we are in an asymptotic regime with sy — oo,
our proposed GBIC criteria adjusts k, accordingly to ensure invalid IV screening consistency. In
particular, in Section S.6 of the Supplemental Material, we demonstrate that our procedure provides
a consistent causal effect estimator without requiring the perfect IV screening property under a
simplified scenario and Conditions 1-2 and 8-9. One of these conditions imposes a constraint on the
penalization coefficient k,: k, > log(sy). We argue that k,, = log(n) is a feasible choice to satisfy
this condition, as the order of the sample size is typically larger than the order of the number of

selected relevant IVs in a two-sample MR study.

3.2 Unknown S and practical implementation

We now consider the realistic scenario where the set S is unknown. Because the collection of
relevant IVs is not known, practitioners typically perform a pre-selection procedure to identify
IVs strongly associated with the exposure. These selected IVs are then used to estimate the causal
effect. As discussed in Section 2, selecting genetic instruments based on their estimated associations
with the exposure variable from GWAS and using the same data for both instrument selection and

estimation can lead to biased causal effect estimates due to the winner’s curse phenomenon. To
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address the issue of winner’s curse bias when & is unknown, we integrate the proposed method from

the previous section with the approach described in [33] to perform Rao-Blackwellized randomized

instrument selection.

For each SNP 7 = 1,2,...,p, we generate a pseudo SNP-exposure association effect Z; ~

N(0,7?), and select SNP j if % + Zj‘ > ). Define the set of selected SNPs as Sy = {] :

g

f—f + Zj‘ >N\ j=12... ,p} and its cardinality |S\| = s). For each selected SNP j € Sy, we
J

construct an unbiased estimator of Ox; as

~

X, $(Aj+) — o(4-) , where A; + = — P, + év

N ~ o
BX]-,RB = 5)(]- - n 11— (P(Aj7+) + @(Aj,f) ox;n - n

Algorithm 1: Algorithm to solve the optimization problem in (4)

Input: Data inputs and initial parameters
Output: Estimated parameters ¢ and 7

Initialization Set k = 0, generate 6(*) ~ Uniform (mir11<j<SA g%,maxlgjgsA g}?),
j i

Block Coordinate Descent

repeat
Fix %) update r§k+1);
Order (Byj_e:cgﬁxj‘“)z - 9242(‘-7’“, j=1,2,...,5\ — v in decreasing order;
Set r§k+1) = Byj — G(k)BXj’RB fi)r the largest sy — v components, j =1,...,s) — v, and
iRt =0forj=sy—v+1,...,8);

Fix r(k+1), update #*) by minimizing the following objective function:

J

~ ~ 2
(ﬁYg -0 /BXJ-,RB - Tj('k+l)) —-6*- 8%9-7}{13

2
y;

9(*+1) = arg min

1, & .
233 (Tjkﬂ):())

JESA

If ‘W <1077 then Stop and output #(v) = *+1 and 7;(v) = r§k+1) ;

else Set k =k +1;

. gt _ge) _
until ‘% <1077

end

Valid IV Selection via GBIC
forv=2,...,s, do
Calculate R
GBIC(v) = —21 (9(1}), {7 (0)} jeg) Flog(n) - (sx — v);

end
Select ¥ with the smallest GBIC(v);
end

¢(-) and ®(-) denote the standard normal density and cumulative distribution functions. Here,

11



7 is a pre-specified constant that reflects the noise level of the pseudo SNPs. We recommend using
17 = 0.5 as a default value [33]. This choice balances the need for sufficient randomization to address
the winner’s curse bias while maintaining the stability of the selection process. The above procedure
only randomizes the IV selection near the cut-off value A, which implies that the strong IVs with
large By, are invariably selected. Here, the choice of the significance cutoff (\) for selecting IVs
presents a trade-off between including a sufficient number of informative IVs and maintaining the
overall strength of the selected IV set. While lowering the cutoff may improve statistical power by
incorporating more IVs with moderate effects, setting it too low can introduce weak or null IVs
that potentially violate the relevance assumption and compromise the validity of the MR analysis.
In our proposed method, we provide a sufficient condition to ensure the asymptotic normality of
the estimator, which depends on the average strength of the selected IVs relative to the cutoff
value. Specifically, we choose a cutoff of 5 x 107°, commonly used as a threshold for suggestive
significance in GWAS, to strike a balance between including informative IVs and maintaining
the validity of the selected IV set. We note that Rao-Blackwellization has also been applied in
[4] to efficiently combine information from an initial GWAS and a replication study to obtain
unbiased estimates of SNP effect sizes. Our approach differs as we do not require a replication
study to construct an unbiased estimation for Sy, (see Supplement Materials Section 5 for details).
Benefiting from such randomized IV selection, B x; rB is free of winner’s curse bias, implying that
IE[E x; 88l € Sx] = Bx;. Therefore, our proposed bias-corrected least squares objective function
and [y constraint optimization framework in the previous section can be applied:

min 2\(0, {Tj}jES,\)7 S.t. Z ]l(erO) = . (4)

0eR,r;eR :
’ JESAK

As one reviewer suggested, we also implemented two [1-type methods and make comparison with
our [y based method through simulations. Our results demonstrate that while both approaches
maintain comparable Type I error control, absolute bias, mean squared error (MSE), and coverage
probability across various scenarios, the lp-based CARE method achieves higher statistical power.

We have added relevant descriptions, methods, and results in Supplemental Material Section S.2-S.3
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and Section S.8.12. where the loss function is defined as

Yy -~ (B\Y _Q'B\X-,RB_T')Q 92'83(-,3}3
L0, {ribies,) = Z Li(0.75) = Z ’ 0'2] - o2 —1(;=0),
JESA JESA Yj Y;
s2 o o L Ao(Ais) — A -d(4)-) N i( P(Aj+) — d(A;-) )2
R PG\ T 1Ay )+ 0(An) P\ -B(A4) + (A )] )

3.3 Bootstrap aggregation and statistical inference

Since the IV screening step can be rather noisy and we do not expect to perfectly screen out all
invalid IVs, we next incorporate bagging (or bootstrap aggregation) [6] to reduce IV screening
variability and to further improve statistical efficiency. Then, we adopt the non-parametric delta
method [13] to construct a confidence interval for our bagged estimator.

To be specific, we draw bootstrap sample B times from Sy. For the b-th bootstrap sample
(Denoted by S5 ), we adjust the loss function as T;(a, {ri}tjes,) = > iesy w;-‘blAj (6,7;), where w,
is the number of occurrences in S3 , for j-th IVs in Sy. Then, we conduct the invalid IV screening

step for each bootstrap sample Sﬁ’b and select 171) = { Jj:Tjp=0and jeS; b} . The downstream

causal estimator is derived by aggregating the estimated effects from all bootstrap samples, that is:

D Zjeﬁb 5YjﬁXj7RB/‘712/j i 1 i ~ (5)
b — = — ) =5 by
Z‘jei}\b (’Bgfj,RB - U%{j,RB)/O—% B b=1

where 6, is obtained by refitting the loss function /1\(0, {r; }j 61717)'
To provide valid statistical inference on the true causal effect 8, we use the non-parametric

delta method [14] to estimate the variance of the bagged estimator with 72 = 3 §327 where

JESA
§j =B! Zle(wfb - By 7 w;“k)(@\b —6). Then we construct a (1 — a)-level confidence interval
for  with [0 — Za/2 " On, 0+ Za)2 En]. Here « is the upper a/2-quantile of the standard normal
distribution.

In the remainder of this manuscript, we refer to the proposed method as Causal Analysis with
Randomized Estimators (CARE). The formalization of our proposed algorithm can be found in

Algorithm 2. We also provide the discussion on the time complexity of this algorithm in Section

S.1 in Supplemental Material.
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4 Theoretical investigations

To discuss our theoretical investigations in detail, we begin by revisiting and introducing notations
and assumptions. Recall that the set of selected IVs after rerandomization is defined as Sy = { j:
fz +7Zj| > N\ j = 1,...,p} and its cardinality is denoted as |Sy| = sy. We next define k) as
the average of squared standardized IV effects to measure the selected IV strength in Sy, that
is k), = i ZS ii;ﬂ Among the selected IVs after rerandomization, we denote V) = { Jj: JE€
Sy and 7 :j %}A as ]the set of valid IVs in Sy and denote its cardinality as |V\| = vy.

Considering the dual sources of randomness in our proposed estimator (one from the original
GWAS sample, and the other from the bootstrap resampling), we separate these two sources of
randomness by denoting the conditional expectation taken with respect to bootstrap resampling

as E* [ ] = E[ . |S>\, {(B%’BXJ',RB)}J‘GSJ‘ Next, we introduce three additional assumptions for our

theoretical investigations:
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Algorithm 2: CARE

for j + 1 to pdo
Generate a pseudo SNP-exposure association effect Z; ~ N(0,7?),

If |25 4+ 7| > A, Then select SNP j.
end
Define the set of selected SNPs as Sy = {7 : fij +Z;| >\, j=1,2,...,p} and |Sy| = s,
i

for j € S\ do
Construct an unbiased estimator of 8x; rs as

. ~ ox; ¢(Aj4)—d(Aj-) B, A
ms = Bx, — —2 : ~——, where A4; 4 = ——= £ -
BJ,RB BXJ 1_® (A]7+) +® (A]—) j,E ox;n n

and ¢(-) and ®(-) denote the standard normal density and cumulative distribution functions.
nd

orb=1to B do

Draw bootstrap sample S, from Sy,

Conduct the invalid IV screening procedure for 53 ,

= 0

pmin AL O dridies) s D dnmo=ve = Vi) ={j:7 = 0] €S},
’ JESK 4
where I (0, {r;}jes,) = ZjesA wipl (9, {Q}jES,\)'
Select the final estimated set of Valid IVs V; by GBIC,
Derive the causal estimator for the b-th bootstrap

~ — 0
0, = AL Z BYjﬂXj,RB Ay = Z 5Xj,RB Xj,RB.
boLe g2 7 ~ o3
JEVs ! JEVs !

end

Obtain the final estimator by bootstrap aggregation 6= % Zszl é\b,
Adopt the non-parametric delta method to estimate the variance of the bagged estimator with

~ ~

~ =5 B B ~
or = ZjeSA SJQ" Sj = % D b1 (U’?b - % > k=1 w;k) (6 — 0),
Construct a (1 — a)-level confidence interval for 6 with [0 — Za  Op, 0+ zg - ﬁn], here zg is the

upper «/2-quantile of the standard normal distribution.

Assumption 2 (Variance stabilization) There exists a variance stabilizing quantity ay and a
vector T € R** in which each component is independent of {(u;,v;)};cg, and uniformly bounded

away from infinity in probability in the sense that

sup
JESK

ay - E* [Agl ‘ﬂ}jb} - Tj‘ = Op(l)a

where Ap = 3 1cs, Wb - (Bg(k’RB - 8§(k,RB)/Ui2/k’ and Wjp = wy, - (T, = 0) - L(w}, > 1). In addition,
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max;
.765)\f8Xj P
——< — 0.
Sesy P%,

there is mo dominating IV in the sense that

The first part of the above assumption, intuitively, ensures that our estimator 6 converges to
a non-degenerative distribution asymptotically when appropriately scaled by ay/\/sx - kx. This
scaling factor accounts for the number of selected instruments and their average strength, enabling
valid statistical inference. The second part of the condition requires that, after selection, no single
IV exerts a “dominating effect” on exposure, which aligns with the biological understanding that
complex traits are influenced by many genetic variants with small effects (i.e., the omnigenic model
[5]). To cast more insight into Assumption 2, in Section S.4.3 of the Supplemental Material,

we consider a special case where perfect IV screening is achieved. We show that in this case,

Assumption 2 holds for both valid and invalid IVs in Sy.

Assumption 3 (Negligible invalid IV induced bias) There is negligible bias induced by po-

tential imperfect screening of invalid IVs after bootstrap aggregation in the sense that

\/sz)tiﬁ/\E* [Ab_l ]g; BXJ-’RB Ty @jb/a%.} = 0,(1).

Our theoretical investigations reveal two sets of sufficient conditions under which Assumption 3
holds (See Section S.5 and S.6 in the Supplemental Material). The first set of sufficient conditions
ensures that the selected IVs are “nearly perfect,” meaning they are valid but do not include all
possible valid IVs. We show that this nearly perfect IV screening property can be satisfied when
there is strong prior knowledge about the trait’s genetic architecture or where valid and invalid IVs
are easily distinguishable. The second set of sufficient conditions ensures Assumption 3 holds even
if our proposed IV screening procedure does not screen all invalid IVs. In particular, our analysis
indicates that when IVs with large r; values (strong pleiotropic effects) are effectively screened out,
our estimator maintains consistency even if the selected set includes some invalid IVs with small
r; values (weak pleiotropic effects). Together, these theoretical investigations suggest that perfect

IV screening is not a prerequisite for valid inference in our proposed method.

Assumption 4 (Instrument Selection) Define n = mini<j<,7; and 7 = maxi<j<pn;, then

both n and 7 are bounded and bounded away from zero.

The above assumption requires that the parameter 1 should not be too small or too large, as it
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impacts the concentration behavior and asymptotic normality of our estimator. This assumption
can be satisfied by design in our method. We recommend using a default value of n; = 0.5 for
all j (where 1 < j < p), which ensures that both 1 and 7 are bounded and bounded away from
zero. This choice simplifies the implementation while maintaining the theoretical guarantees of our
method. Our simulation study also suggests that our method is not sensitive to the choice of 7.
We are now in a position to describe the asymptotic behavior of our bootstrap aggregated
estimator. Without loss of generality, we consider a particular form of our estimator in an ideal

case where § = E* [é\b]-

Theorem 1 Under Assumptions S1-4, as s) 2 50 and % 2 o0, our proposed estimator satisfies

the following representation

a) ) (é'

78)\-%;)\ ZTj-ﬂj—i-Op(l).

)= L
A/S\ T R\ jE8y
where u; = ng’RB (0 “Bx; + Vj) — Q(Bg(jm — 8§(j,RB)' Therefore, conditional on the selection event
Sy, our estimator converges to a Gaussian distribution, that is

Zjes/\ T;V[ﬂj ’S)\]

5 )
a

5'_1(9~ —6) ~ N(0,1), where 52 =

In the theorem above, we consider the asymptotic regime in which both sj 2 50 and 'f\—é 500
tend towards infinity. This asymptotic regime is quite natural in the context of MR. On the one
hand, sy — oo requires the number of IVs selected through re-randomization to be large enough, so
that our inverse variance weighting-based estimator exhibits concentrated behavior. On the other
hand, the condition ')'% B 50 does not involve the bootstrapping procedure; instead, it pertains to
the strength of the selected IVs relative to the threshold A used in the re-randomization step (Step
1). This assumption ensures that, on average, the selected IVs are sufficiently strong compared
to the threshold, thereby satisfying the relevance assumption. It is also likely to hold, as it is of
the same order as the GWAS sample size n after IV selection through re-randomization. From

a theoretical standpoint, both conditions have been rigorously verified in [33] under appropriate

conditions.
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5 Simulations studies

We generate different simulation settings to evaluate the methods performance. To save space, the
simulation settings are put into Supplementary Section S.8.1. Figure 2 summarizes the performance
of various MR methods under the setting of 50% of the IVs are invalid, which we discuss below.

First, both ¢cML (Type 1 error rate: 0.136) and MR-Lasso (0.112) produce inflated Type 1 error
rates. This is because cML and MR-Lasso ignore the randomness in the valid IV selection procedure
and assume all invalid IVs have been screened out, which is not the case under this simulation
setting. In contrast, cML-DP (0.042) and CARE (0.042), which explicitly consider the randomness
in valid IV selection, yield well-calibrated Type 1 error rates. Furthermore, other benchmark
methods, including (random effects) IVW (0.056), MR-Egger (0.050), MRmix (0.020), MR-Median
(0.032), MR-mode (0.004), MR-APSS (0.054) and RAPS (0.038) also yield well-controlled Type 1
error rates, though MRmix, MR-Median, MR-mode, and RAPS yield slightly conservative Type
1 error rates. Notably, the winner’s curse bias itself does not cause an inflated Type 1 error rate
issue [33], partially explaining the robust performance of many MR methods under the null.

Second, CARE achieves considerably higher statistical power than benchmark methods (Fig-
ure 2a). Notably, CARE corrects the winner’s curse bias and measurement error bias, which allows
for a more liberal threshold (say, p < 5 x 107°) for instrument selection, resulting in higher power
than other methods that typically use the genome-wide significance level (p < 5 x 107%) as the
threshold. Even though MR-APSS, like CARE, allows a liberal threshold (p < 5 x 107%) due to its
direct winner’s curse bias correction without theoretical guarantee, CARE outperforms MR-APSS,
because of its full correction of the winner’s curse bias and meticulous consideration of measurement
errors and invalid I'Vs.

Third, CARE yields smaller absolute bias compared to benchmark methods, attributable to
its comprehensive approach to simultaneously addressing multiple sources of bias (measurement
error bias, pleiotropic effects, and winner’s curse bias). In comparison, benchmark methods focus
on addressing some biases specifically, leading to biased results. For instance, while MR-APSS
directly corrects for the winner’s curse bias and considers potential invalid IVs, it still presents a
larger absolute bias compared to CARE, possibly due to its more limited scope in bias correction and

incomplete correction of the winner’s curse bias. However, while CARE significantly reduces bias,
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its estimates are not entirely bias-free. This residual bias likely stems from the subtle differences
between valid and invalid IVs. Consequently, the estimates are inevitably influenced by some
invalid IVs, albeit to a lesser extent than in other methods. Furthermore, we confirm that ignoring
the winner’s curse bias and directly applying the measurement error model with B x; in CARE
generally results in worse performance, particularly concerning the absolute bias (Supplementary
Figure S1). As expected, CARE yields much smaller MSE compared to benchmark methods as
CARE has higher power and smaller absolute bias than any benchmark methods.

Fourth, the confidence intervals provided by CARE have coverage probabilities close to the
nominal 95% level. When the absolute causal effect || is large (say, 0.1), the absolute bias is
relatively large, resulting in slight undercoverage of the true causal effect.

We conduct several additional simulations, including varying proportions of invalid IVs (Supple-
mentary Section S.8.2), uniform-distributed effects in correlated pleiotropy (Supplementary Section
S.8.3), balanced horizontal pleiotropy with InSIDE assumption satisfied (Supplementary Section
S.8.4) and directional pleiotropy with InSIDE assumption violated (Supplementary Section S.8.5).
The results patterns are similar.

Furthermore, to validate the results are not sensitive to the specific value of 1 within a reasonable
range, we conducted sensitivity analyses using different values of n (0.1, 0.3, 0.5, 0.7, 0.9) in our main
setting. The results demonstrate that the performance of our method remains stable and consistent
for n values between 0.3 and 0.9 (Section S.8.6 in Supplementary Material). As expected, a very
small 1 (0.1) led to worse results, likely due to insufficient rerandomization to fully account for
the winner’s curse bias. Based on these findings, we recommend that practitioners use the default
value of 7 = 0.5 in most cases without the need for dataset-specific fine-tuning.

While CARE demonstrates robust performance across various scenarios, it is important to note
its limitations. As one reviewer suggested, we consider a simulation scenario that the parameter
assumptions of other methods are true (where a three-sample MR design is used and the first
GWAS is reserved solely for IV selection based on association strength so that the normality of
3 x; is not distorted). In this case, some alternative robust MR methods may outperform CARE,
indicating that other robust MR methods may outperform CARE in a three-sample MR desgin
(Supplementary Section S.8.13). Further simulations revealed two situations CARE is suboptimal.

Firstly, in settings with non-linear relationships between genetic variants and exposures, CARE
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showed slightly inflated Type 1 error rates, larger bias, and worse coverage (Section S.8.8 in Sup-
plementary Material). This limitation stems from the method’s underlying assumption of linear
relationships, which is common in MR studies and often justified by the predominantly linear
or additive nature of genetic effects on complex traits [51]. Unlike our current approach, which
exclusively utilizes GWAS summary data to estimate causal effects, recent advancements have ad-
dressed the non-linearity issue through methods like DeepMR [34], a deep learning-based approach
applicable when individual-level DNA sequence data are available. Secondly, CARE’s performance
may be compromised when the sample size of the exposure GWAS is small, resulting in a limited
number of selected candidate IVs (Section S.8.9 in Supplementary Material). This issue may also
arise due to a relatively small number of independent IVs (Section S.8.10 in Supplementary Mate-
rial). Such scenarios can lead to increased sensitivity to violations of IV assumptions and challenge
our asymptotic normality results, which require the number of candidate IVs to approach infinity.
Users should exercise caution when applying CARE and other MR methods in these scenarios and
consider alternative methods or larger sample sizes when possible.

In the end, it is worth mentioning that the core algorithm in CARE is written in C++ using
the R package ReppArmadillo, and each step within the algorithm has a closed-form solution.
Consequently, CARE has similar computational efficiency to many other methods, such as cML-
DP and MRmix (Supplementary Figure S4), despite utilizing a larger number of IVs and a relatively
high number of bootstrap iterations (2,000). Under the main simulation setting (12,000 simulations
across 30%, 50%, and 70% invalid IVs), the average computational time of CARE is 12.6 seconds.
Notably, the computational time for all methods is less than a minute in most situations when using
one single core in a server. Thus, computational time should not be the primary consideration when

deciding the method to be used.

6 Case studies

In this section, we investigate the performance of proposed CARE in two case studies. We put the

data harmonization details in Supplementary Section S.9.1.
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6.1 Negative control outcomes

To evaluate the Type 1 error rates in real data, we employ negative control outcome analyses,
applying CARE and benchmark methods to investigate the causal effect of exposures on outcomes
known a priori to have no causal relationship with the exposures. Briefly, in these negative control
outcome analyses, the causal effect size is expected to be § = 0 [44] because negative control
outcomes are determined prior to the exposures. However, unmeasured confounding factors may
affect the estimates of 6. In particular, following others [44], we use ease of skin tanning to sun
exposures and natural hair color before greying (six outcomes: Ease of skin tanning, Hair color
black, Hair color red, Hair color blonde, Hair color light brown, and Hair color dark brown) as
negative control outcomes. These data were downloaded from the IEU OpenGWAS Project [32]
with GWAS ID: ukb-b-533 and ukb-d-1747. Notably, both tanning ability and natural hair color
before greying are primarily determined at birth (thus, prior to considered exposures) but could
be affected by unmeasured confounders [44]. In this setting, the inclusion of invalid IVs due to
widespread pleiotropic effects or unmeasured confounding factors (e.g., population stratification)
may result in incorrect rejections of the null hypothesis (0 = 0) for MR analyses, leading to inflated

Type 1 error rates.
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Figure 2: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the main setting with 50% invalid IVs. Power is the empirical
power estimated by the proportion of p-values less than the significance threshold of 0.05. Coverage
is the empirical coverage probability of the 95% confidence interval.
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We consider 45 exposures, which include HDL cholesterol, body mass index (BMI), height,
Alzheimer’s disease, Lung cancer, Type 2 diabetes, stroke, asthma, and many others. All GWAS
data are downloaded from the IEU OpenGWAS Project [32], and details of each exposure are rel-
egated to the Supplementary Table 1. These exposures were selected based on their prevalence
in existing literature and relevance to public health. Specifically, traits such as BMI, height, and
HDL cholesterol have been extensively studied in genetic epidemiology and are known to be asso-
ciated with various health outcomes. Disease outcomes like Alzheimer’s disease, Type 2 diabetes,
and cardiovascular diseases represent major public health concerns and have been the focus of
numerous Mendelian randomization studies. This diverse set of exposures covers a wide range of
physiological and pathological processes, allowing us to evaluate CARE’s performance across var-
ious scenarios commonly encountered in Mendelian randomization studies. We apply CARE and
benchmark methods to infer causal effects between these 45 exposures and six negative control
outcomes (tanning ability and natural hair color before greying), resulting in 270 trait pairs. The
corresponding p-values should follow a standard uniform distribution, given that the causal effect
size 8 = 0 under the negative control outcomes analysis.

A B

. H oA w MR AP Conthx Mod MR Lasso w R Con
3 3 o Methods Methods

Figure 4: Number of significant causal
pairs identified by different methods
under  Bonferroni-correction  threshold
< 0.05/45 ~ 1073 using (A) 45 exposures

Figure 3: QQ plots of p-values in negative
control outcome analysis. The gray-shaded
part is 95% confidence interval.

used in negative control analysis and (B)
24 exposures that are reported by CDC
and existing literature.

Figure 3 summarizes the QQ-plots of —log;y(p) values for different methods. First, CARE
yields well-calibrated p-values, indicating its reliability in controlling type 1 error rates under this
negative control outcome analysis (Figure 3A). Similarly, IVW, cML-DP and MR~APSS also achieve
good performance (Figure 3B). In contrast, MR-mix, MR-Egger, RAPS, ContMix, cML, Weighted-
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Median, Weighted-Mode, and MR-Lasso yield inflated p-values (Figures 3C and 3D). One may
be surprised that widely used IVW achieves good performance. This is because we make every
effort to make a fair comparison between different methods and use the (random effects) IVW to
consider pleiotropic effects (i.e., invalid IVs) by allowing over-dispersion in the regression model.
As expected, the fixed effects IVW that assumes all used IVs are valid leads to inflated p-values
(Supplementary Figure S34A).

To understand why CARE performs well, we highlight two aspects. First, selecting valid 1Vs
can be noisy in real data applications. That explains why cML and MR-Lasso, methods that
ignore the screening variability in IV selection, produce inflated p-values (Figure 3D). Applying
bagging reduces the screening variability and thus helps achieve well-calibrated p-values in CARE.
Similarly, as cML-DP uses a data perturbation method to account for the screening variability, it
also achieves relatively good performance. Second, CARE adopts a rerandomization step to select
candidate IVs, accounting for the impact of the winner’s curse bias. Breaking the winner’s curse
bias helps CARE achieve well-calibrated p-values as CARE uses a measurement error model and
relies on the unbiasedness estimation of exposure-SNP effect Sx;. This rerandomization step is
crucial for CARE, and we confirm that applying CARE without the rerandomization step leads to

inflated p-values (Supplementary Figure S34B).

6.2 Risk factors identification for COVID-19 severity

To better understand the underlying causal risk factors for COVID-19 severity and demonstrate
the performance of our proposed method CARE, we apply CARE and competing MR methods
to systematically identify causal risk factors for COVID-19 severity. Specifically, we investigate
the same 45 exposures used in the negative control outcome analysis and use COVID-19 severity
(B2) from the covid-19hg (B2, version v7, European ancestry only; [27]) as our outcome data.
The dataset includes data from 32,519 hospitalized COVID-19 patients and 2,062,805 population
controls.

First, we compare the number of significant causal exposures identified by CARE and competing
methods under the Bonferroni correction (< 0.05/45 ~ 10~3) (Figure 4A). CARE identifies 6 causal
exposures. In comparison, the competing methods RAPS, cML-DP, IVW, MR-Lasso, MR-APSS,
MR-mix, ContMix, Weighted-Median, Weighted-Mode, MR-Egger identify 7, 5, 5, 5, 4, 4, 3, 0, 0
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and 0 causal exposures, respectively. In terms of statistical power, CARE ranks second among all
MR methods considered. RAPS achieves the highest power but also yields inflated p-values in our
negative control outcome analysis and simulations, primarily due to neglecting variability in valid
IV selection step.

Second, we compared the risk factors identified by different MR methods to known factors that
meet two criteria: (1) they have been reported by the CDC or in peer-reviewed literature, and
(2) they overlap with the 45 exposures used in our negative control outcome analyses. Through
a comprehensive manual review by two researchers, we identified 24 well-established risk factors
for COVID-19 severity (Supplementary Table 1). Notably, our new method, CARE, demonstrated
superior performance by correctly identifying six of these 24 known risk factors: BMI, extreme
BMI, HDL cholesterol, obesity class 1, obesity class 2, and overweight. In comparison, benchmark
methods showed lower detection rates: MR-LASSO identified 5 risk factors, while cML-DP, IVW,
MR-APSS, MR-Mix, and RAPS each identified 4. ContMix detected 3, and Median identified 2.
Both Weighted-Mode and MR-Egger failed to identify any risk factors (Figure 4B). Importantly,
CARE also avoided false positives, i.e., it did not incorrectly identify any factors lacking strong
supporting evidence in the literature. In contrast, several benchmark methods produced potential
false positives. For example, cML-DP incorrectly identified childhood obesity as a risk factor, while
IVW erroneously identified both celiac disease and childhood obesity. Finally, when we focus on
four methods with relatively good performance under our negative control outcome analysis, the
result patterns are similar (Supplementary Section S.9.2).

In summary, CARE achieves high power in identifying likely causal risk factors for COVID-19
severity, and the identified risk factors can be largely validated by complementary analyses and

literature.

7 Conclusion

We introduced a unified two-sample Mendelian randomization within the summary data framework,
referred to as Causal Analysis with Randomized Estimators (CARE), that accounts for winner’s
curse, measurement error bias, and genetic pleiotropy simultaneously. Through simulations and

biomedical applications, we demonstrate that CARE delivers robust causal effect estimates with
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improved statistical power. More importantly, the CARE estimator enjoys rigorous theoretical

guarantees under mild assumptions, which is often lacking for competing methods.
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S.1  Algorithm to solve the optimization problem in (4)

S.1.1 Algorithm to solve the optimization problem in (4)

In the section, we provide an algorithm borrowing ideas from coordinate descent [49] to solve the

optimization problem in (4), that is

06 {rihes)) : D105 =0=v} = V)={j: 7 =0je&}

0 %Rflin R{
eR,r;e ;
! JESA

This step allows us to screen out invalid IVs and select V.



We note that the proposed algorithm borrows strength from the classical coordinate descent al-
gorithm by iteratively minimizing the objective function by fixing either 6 or r;’s. As our algorithm
aims to screen out invalid IVs with r; # 0, one difference is that we iteratively search for IVs with
large “residuals” (i.e., Byj - QBX],,RB) in Step 2. (i) so that the objective function can be further
minimized. Furthermore, as our optimization problem involves [y penalty, instead of choosing the
model size v based on cross-validation frequently adopted in Lasso-type problems [48, 59], we adopt
the Bayesian Information Criterion to select the final set of valid IVs.

Our proposed algorithm consists of three steps as follows:



Algorithm 3: Algorithm to solve the optimization problem in (4)

Input: Data inputs and initial parameters
Output: Estimated parameters 9 and T}

Initialization Set k = 0, generate 90 ~ Uniform (mml<]<sA EY , MaX]<j<sy ZY )

Block Coordinate Descent

repeat

Fix 6%, update r§k+1);

~ —~ 2
(Br, =0 Bx;m0) 0%, w0

Order — =, Jj=12,...,sx—vin decreasing order;
Y]- Y
Set r](-kH) = By, — H(k)ﬁxj,mg for the largest sy — v components, j =1,...,sy — v,
and rj(.kﬂ) =0forj=sy—v+1,...,8);
Fix r§k+1), update 8%) by minimizing the following objective function:

k+D\? _ g2 =2
(5)/—9 5XJ,RB—7“] ) -0 "OX,RB

gk+1) = arg min T e+1) -
YR ]% 0326' (rj”"7=0)
If )Wik@m < 1077 then Stop and output 0( ) = 0%+ and 7;(v) = r](-kﬂ) ;
else Set k =k +1;
until ‘W <1077;

end
Valid IV Selection via BIC

forv=2,...,s) do
Calculate

BIC(v) = 21 (8(0), {7(v)} ) +10g(n) - (51 — v);

end

Select V with the smallest BIC(v);

end




S.1.2 Justification of unique solution of Problem (4) under fixed 6

To cast some insights into the proposed Algorithm 3 for solving Problem (3), we note that in each
iteration, our algorithm breaks the optimization into two sub-problems and provides a closed-form
global optimal solution for these sub-problems.

In the first sub-problem, we fix 6 and treat Problem (3) as an optimization problem with respect
to {r;}jes:

min (6, {r;}jes), st > Liy=0) = v-
T'j JjES

Unlike classical [y constrained linear regression with an arbitrary design matrix, solving this problem
is computationally efficient as we can decompose the original loss function into the sum of ;(6,r;).
Each [;(6,7;) only depends on a single r;. In this case, a closed-form solution to this optimization
problem can be given.

As we can see that, for invalid IVs with r; # 0, [; (O,Tj) reaches its minimum 0 by setting
rj = BYJ- —-0- BXJ- (See justifications below). While for valid IVs with r; = 0, [; (H,Tj) takes a
constant value of %(B\yj —0- BX].)Q/J%_ — 267, O'gfj/O'%/j.

Therefore, to minimize the the loss function l(@, {Tj}jgg) for given 6, we only need to find
v IVs with the smallest %(By] -6 BX].)Q/U% — 367 ag(j/a%/j and set their 7; = 0 and the rest
of r; to Byj -0 B x;- The Block Coordinate Descent Step of our algorithm is indeed providing
such a closed-form global optimal solution of the above combinatorial optimization problem. After
deriving {r;};cs, we then solve our second sub-problem by solving Problem (3) with {r;};cs fixed.
The alternative minimization of § and {r;};es together can ensure the objective function decay.

To justify any given 0, we can give a closed-form solution of the optimization problem

min 1(0, {T'j}jesx) s.t. Z 1,—0 =,

{Tj}jesx JESy
we further investigate [; (9, rj) and discuss the solution to this optimization problem in three dif-
ferent situations.
oL, {r;}; ol (0,r; By, — 0 - Bx,rs — 1
(0, {rj}ses,) _ i(0:75) _ By, Bx;me — T When 7; # 0.

: : 2
or; or; oy,




When r; = 0.

Li(6,r;) = E(B\YJ _G'B\XyRB)Q B 192"7%9,}13
I\ 1 2 0-32/. 2 0,)2/'
7 J

e In the case that [/B’\Yj —0- EXJ,RB > 0, we have [; (O,rj) reach its local minimum 0 when

Ty :ﬁYj —e'ﬁXj,RB > 0.

When r; =0,
L0 1) — 1(By, — 0-Bx,; )2 10°- 0% ps
]( 7rj) a 5 0'2 B 5 0'2
" Y,
a(o{r:}; o1 (6m
And when r; < 0, we have ( i ?ESA) _ (g) S
1(By. —0- By pn — 1:)2
lj(@,rj) > lim 7(61/3 5;933 ) o
rj—=0= 2 o2
Therefore we have
~ —0- -~ 2 92 . 0_2
1(By, =0 Bx,m8)? 107 0% pp
2 ) 2
2 ot

min /; (H,Tj) =0 and ; (Q,Tj = 0) = 3
r;j 70 O'Yj

In the case that Byj —0- BXhRB < 0, we have [; (0,7"]') reach its local minimum 0 when

Tj Zﬁyj —9-5}933 < 0.

1 (0 1 (BYJ —0- B\Xj,RB)Q 107 Ug(j,RB
i(0rs) = 2 0¥ 2 ol
j i

When r; =0,

au(0.4r;}; oL (0,r;
( {gﬁje‘%) = gT ,rj) > 0, and therefore
J J

And when r; > 0, we have
2. 2 2
1 (By; — 0 - Bx,rs —75) > 0.

Li(0,r;) > lim =
j( 7TJ) - Tjgré+ 2 0—%
Therefore we have
1By, —0-Bx.re)? 10 0%
min (Q,Tj) =0 and [; (G,Tj = 0) == (B, 2ﬁXJ’RB) - = QXJ’RB
2 oy, 2 oy,

;70



e In the case when Byj -0 EXJ,RB =0.

al(6,{r;}, aL; (0,r;
When r; > 0, we have ( {gfriﬂesx) _ Jgr;]) > 0, and therefore

~

1(By; — 0 Bx,pe — 1)

Li(0,r;) > I — > 0.
]( 7T]) - Tjg%+ 2 U%} -
ol 0,{r;}; oL 0,r;
When rj < 0, we have ( ’{gjrijesk) = Jgr;rj) < 0, and therefore
1 By — 0 Bx.rs —14)2
L(0,r,) > lim 1 (By, ﬁ;g,ms i) >0,
ri—0" 2 U}/J
When r; = 0, we have
1i(0,75) = 192'0391‘3
i\v,75) = 2
2 oy,

Therefore we have

. 1(51/» —Q'BX»,RB)2 162"73(',1113
g?;%lj(ﬁ,rj):Oand lj(H,rj:O):i J 012@ J ~3 a%,jj

S.1.3 Adoption of [; penalty instead of using Lasso

We adopted the [y penalty for three reasons:

e Unlike the classical Iy constrained linear regression, our considered [y constrained optimization
problem is computationally efficient to solve as closed form solutions of {r; }j cs, canbe derived

when 6 is fixed (See previous discussions in Section 1.2).

2 2
0 'UX]- JRB
y 2
JESA ij

e Due to the inclusion of a measurement error bias correction term, £ > I(r; =0),
in our objective function, adopting a Lasso-type penalty results in an optimization problem

with non-differentiable gradients, making the algorithm remains time-consuming to solve.

e Empirically, we have actually tested the use of the I; penalty, which was our original idea.
There, to enable efficient optimization, we removed the bias correction term for the measure-
ment error. Our preliminary investigations with the /; penalty revealed several limitations: i)
The number of selected IVs exhibited high sensitivity to small changes in the tuning param-

eter \. ii) The [; penalty’s simultaneous penalization of valid and invalid IVs is suboptimal,



given the often subtle differences between these IVs in MR contexts. iii) The convex nature
of the I; penalty resulted in discontinuous jumps in the number of selected IVs as A varied,
leading to suboptimal performance. In contrast, the [y penalty offers several advantages in
our specific context: i) It provides a comprehensive set of potential solutions across varying
numbers of potential (valid) IVs. ii) It better accommodates the nuanced differences between

valid and invalid IVs typically encountered in MR studies.

These considerations collectively support the use of the [y penalty as a more suitable approach

for our specific optimization problem in the MR framework.



S.2 Algorithm to solve the optimization problem using /; penalty

e The first approach: We replace the [y constraint with an [; penalty in the following objective

function:

ZA(Q, {rj}jes, ’Y) £ Z L (Gv Tj)

JjES

1(BY~—9'BX~—T]')2 192'0%,
l](e,rj,"y) - 5 z 0_12/ ! - 5 0_12/ ]RB]]‘(T]:O) +’Y’T]|
J J

For a fixed tuning parameter -, we estimate the parameters by minimizing:

in_1(0,{r;}jes.7).
pcin_ 16, {rs}jes, )

To solve this optimization problem, we alternate between minimizing with respect to 8 and
{rj}jes. The optimal solution for {r;},cs given a fixed 6 is:

Sign(ﬂYJ -6 ﬂXj,RB) : (‘,BYJ -0 ﬁXj,RB| -7 U%/j) if |5YJ -0 ﬂXj,RB| > szfj +10| - 0 X ,RB;
Ty =

0 otherwise.

Theoretical justifications for this result can be found in the Supplemental Material Section

S.3. The optimal solution for 6, given fixed {r;};cs, is:

~ —~ 2
] <5Yj _HIBX]'7RB_rj) _92'(7%(]»,%
arg min Z 3 L,=0)-

o
0ER  es Y;

We iteratively update 6 and {r;};es until convergence. The tuning parameter ~ is selected

via BIC, and the corresponding estimator 6(-y) is used for inference. The full optimization

procedure is detailed in Algorithm 4.

e The second approach: We further replace L(;,=0) in the measurement error term with

1 — |rj| and derive the following objective function,

1(0,{rj}jes) = Z 1 (0,75)

JjES

10



Z(Q TM)_1(33/],—(9-3)(],—7"]4)2_192.0%9+( +192.0'§(j)|r“
) a% 2012/3, 720% a

For a fixed tuning parameter ~, we also estimate the parameters by minimizing:

in 10, {r;}; .
p i (0,{r;}jes:7)

To solve this optimization problem, we alternate between minimizing with respect to 6 and

{rj}jes. The optimal solution for {r;},cs given a fixed 6 is:

sien(By, — 0+ Bx; ne) - (1By; — 0 Bx; ns| = Aj - 0%,) if [By, — 0 Bx,me| > Ny - 0%,

ry =

0 otherwise.

2. 2
where \j = v+ % GQXJ for all j € §. Theoretical justifications for this result can be found in
¥

the Supplemental Material Section S.3. The optimal solution for 6, given fixed {r;};cs, is:

02 2

+Z 7+

JES Y jeS Yj jeS

X *Tj)z 1
arg min— Z —22 )]r]|

0eR

We also iteratively update 6 and {r;};cs until convergence and use BIC to select the tuning
parameter v. The corresponding estimator 9\(7) is used for inference. The full optimization

procedure is detailed in Algorithm 5.

11



Algorithm 4: Algorithm to solve the optimization problem in (4)

Input: Data inputs and initial parameters

Output: Estimated parameters 0 and 7

Initialization Set k = 0, generate 6©) ~ Uniform (rnir11<j<SA gyj , AKX < j<sy gy’),
TP T Bx

Block Coordinate Descent

repeat
(k+1) |

Fix %), update T
For Vj € S: If ‘B\yj — k) -EXJ7RB| > - a%j + \9(’“)| - ox, re, We let
Y = sign(By, — 00 - Bx, 5e) - (1By, — 0% - By, pel — - 0%).

J
Otherwise, we set r§k+1) =0.

Fix rj(kﬂ), update #*) by minimizing the following objective function:

2
) ) (k+1) 2 ~2
(k+1) . (51/_7 — 0 Bx;re = 7; =07 0%, re
0 = arg min Z s ]l(r("‘“):o)'
OeR ; Y J
JESA J

B B,
2jes T La=0)

gl — —
ﬂg(j,ma ag(j,ma 1
ZjES ( o’?,j o o’%,j ) (r;k+1):0)

If ‘9(’”61()759@ < 1077 then Stop and output 5(7) = 0*+D) and 7(v) = r§k+1) ;
else Set k =k + 1;
. g(k+1) _g(k) _7.

until ‘T <1077,

end

Valid IV Selection via BIC

for all candidate v do
Calculate

BIC(7) = =21 (0(+), {751}, ) +1og(n) - (sx = 7);

end

Select 177 with the smallest BIC(v);

end

12



Algorithm 5: Algorithm to solve the optimization problem in (4)

Input: Data inputs and initial parameters

Output: Estimated parameters 0 and 7
Initialization Set k = 0, generate 6©) ~ Uniform (mlnl<3<SA Z; g:i),
Block Coordinate Descent
repeat
Fix %), update r§k+1) :
For Vj € S: If ‘B\y — %) -B\XJ7RB| > ;\j . a%/j, we let
L0

r](-kH) = Sign(ﬂy — ok BX RB) - (|Byj — o) 'ij,as| - -0y,) where Ni=v+3
Otherwise, we set r(kH) 0.

(k+1 ), update #) by minimizing the following objective function:

Fix r;
k+1)
— 0By, — 1}
0+ — arg min= / ——
Emin DI oy 2: OB
jGS J j€$ J jJES J

Bx, s (By, —r{* )

Yjes TR
glh+1) _ ’ Xm0
Z 5§(j,ma _ 3§(j,ma . (1 . r(kJrl)I)
JjES ag,j af,j J

B0 60| < 10-7 then Stop and output 5(7) = 0%+ and 7;(v) = T§»k+1) ;

0
It | s

else Set k =k + 1;

g(k+1) _g(k)

until ‘T <1077,

end

Valid IV Selection via BIC

for all candidate v do
Calculate

BIC(y) = 21 (04).{75(1)} e, ) + log(m) - (s = 8);

end

Select 177 with the smallest BIC(v);

end

~2
Ux JRB

j

XRB k
—— L),
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S.3  Theorectical justifications for two /; methods

S.3.1 Method 1

For a fixed tuning parameter -, we estimate the parameters by minimizing:

in (0, {r;}; .
06%}7{?@{ ( 7{7”]}36577)

To solve this optimization problem, we alternate between minimizing with respect to 6 and {r;} jes.
The optimal solution for {r;},cs given a fixed 6 is:

Sign(ﬁYj —0- BX]-,RB) : (\5Yj -0 /BXj7RB’ -7 0523.) if \BYJ- -0 5Xj7RB’ > U;zfj +10] - 0X, RB,

r; =
0 otherwise.

To see this, we investigate [; (9,7“]‘) and discuss the solution of r; when fixed 6. We consider the

objective function:

N N 5 o
1By, —0-Bx, —rj)? 10°-0%,
2 : = L =0) + - [l

l(@, {rj}jGS) = le (9,?”3'), lj (9,’/“]') 5 02 9 02
jes Y; Y
and we have N R
oL (0,7 _0. e
iOrs) _ Py, éXJ’RB Y 4y When r; > 0,
87’]‘ O'Yj
al; (6, By, —0-Bx, s —1;
]( ,7’]) :_BY’ BQX”RB i — v When r; <0,
or; oy,
ooy el By =0 Bxme)? 10°0%
[j( ,Tj) =3 032,], —5 U% When r; =0,

and consider three different scenarios:

e In the case that Byj —0- B\X‘%RB >y 012/],,

oL 6,r;
when r; < 0, we have ]5()7", ) < 0, and therefore
J

1(By, — 0 Bx,rs — 1)
1;(6,7;) > lim L By, Bfﬂ’“ )71
rj—0— 2 oy, 2 oy,
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When r; =0,

1 (B\Y] -0 B\Xj,RB)2 160%- Ug(j,RB
Lj (97Tj) 9 2 )

Ty;

2
y;
When r; > 0, we have [; (0, rj) reach its local minimum when 7; = By; — 0 - Bx;rp — 7 - a%,j.

2 4

17 0y, ~ ~
J

and

1(0,0) = 1;(0. 7))

2 ) 2. 2 2. 4
1(55’]-—9'5&-33)2 19"7)(]-,113 1’7'053.

*’7'(5)@*9'5&,%*’7'012@)

2 2 B 2
2 oy, 2 oy, 2 oy,
P 2 2, 4 2. 2
1(By, —0-Bx,r)* 170y, ~ - 16%- 0% rs
D) o2 +§ o2 _7'(5)/3-—9'/8Xj,RB)—5T
Y Y Y
_ 1 (By; _Q'BXJ‘,RB_V'U}Q/]-)Q 192'0'%(]-,1113
Y 2 5 2
2 oy, 2 oy,

Thus when B\yj -0 I/B\Xj,RB — - 052,]_ > 0] - ox; 8, I (0, rj) achieves the minimum when
2 2 2
TjZBYj —H‘BX]-,RB—V'UY]--

Otherwise, 1; (9, rj) achieves the minimum when r; = 0.

e In the case that Byj —0- BXJ-,RB < = 0}2/]_,

oL (0,r;
when r; > 0, we have % > 0, and therefore
J

~

0By pm—14)2 3 0. B )2
lj(H,rj)Z lim le] Bx; B —T5) :l(ﬁyj 5XJ,RB)‘

T'j~>0+ 2 0-32/3_ 9 0'32/]_
When Tj = O,
(o) = L P10 B 1077
J\Ysly) — 3§ 5 _ = 5
2 o )

15



When r; < 0, we have [; (0, rj) reach its local minimum when r; = Byj -0 BX],,RB + - a%;j.

172 oy, - -
lj(eﬂ“j)zi =) 3—7'(510—9'5)(]-,113-%7'0%)-
i
and
1 (BY —0- BX',RB)2 1 0 U%(‘,RB 1 ’YQ ) ‘7§1/~ -~ ~
0,0) = i(0hr)) = 55— — 5+ By, =0 Bty of)
oy, 2 oy, 2 oy,
1 (B\Y —0- BX-,RB)Q 17°- oy ~ ~ 167 o-g(-,RB
— et Pl T By =0 ) -
2 Jy_ 2 O-Y' 2 Uy.
J J J

1 (By; _Q'BXJ',RB"JV'U}%J-)Q 192"73(]-,113

2 2
2 oy, 2 oy,

Thus when Byj —0- EXJ.M + - 032,], < —0|-ox; r8, I (9, rj) achieves the minimum when
rj = By, —9'5Xj,RB+’Y'U§2fj-

Otherwise, [; (9, rj) achieves the minimum when r; = 0.

e In the case that — - a%;j < Byj -0 BXJ.’RB < - a%j, l; (9,7‘]') achieves the minimum when

7“]':0.
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S.3.2 Method 2

We consider the objective function

10, {rj}jes) = Z (0, 75),

JjeS
where each component loss is given by
2 a 2 2. 2 2. 2
O LG Ate: R athic RN Saliic T
i\WsT5) = 2 2 2 il
2 Iy, 2 oy, 2 oy,
When 6 is fixed, the optimization over r; reduces to minimizing:
~ 1(3}/.—9'3){.—7‘]')2 ~
Li(0,r5) = 5— 7 + Ajlrils
7Y;
~ 62.02
. o 1 X
with )\j =7 + 5?.

J
This takes the canonical form of the Lasso problem

min {;(z I )\r|} .

reR

Letting
aj =Py, =0 PBx;, Aj=X\-oy,,
we have:
. 1 - 1 /1 9
Li(rj) = 272(%' —75)" + Ajlrjl = = 5 laj —1j) + Ajlril ) -
Uy, Uy,
J J

The minimizer of this expression is given by the soft-thresholding operator [12],

. sign(a;) - (laj| = Aj), if laj[ > Xy,
rs = S, (ay) =
0, otherwise.

17



Substituting back, we obtain:

Ty =
0, otherwise.
~ 1 9247%(' .
where \j =y + 53— forall j € S.
Y.

J

18



S.4 Proof of Theorem 1

S.4.1 Notions and Assumptions

We first review some notions and assumptions that will be used in our proofs:

e The selected set of relevant IVs after randomization:

B, .
Sy = {j :‘ J +—2@w:> ANj=1,...,p;.
'

e Cardinality of the set of selected relevant IVs: sy = |S,|.

e The average measure of instrument strength after selection:

2
H)\Iizﬁ;{j.

S\ ! Oy .
N JESA YJ

e In our bagging strategy, we denote the b-th bootstrap sample as S;b and the number of

occurrences in Sy ;, for j-th IVs of Sy as w,. We also denote the selected set of valid IVs as
Vo={j:Fp=0and jeS;,}

and the causal estimator as

a -1 ) 2
Oy = Ab Z BY]'BXJ-,RB/UYja
F€V,
where

2 ~
Ap = Z (BX]-,RB - Ugg,RB)/U%/j'
7€V,

e For convenience, we also denote the conditional expectation taken with respect to bootstrap

resampling as

11 =8 52 G B}

19



Our final estimator is obtained by taking bootstrap aggregation

Assumption S1 (Measurement error model) (i)For any j # j/, (B\Yj,ng) and (BYJ-HBXJ-/)
are mutually independent.
(ii)For each j, the association pair (B\Yj,BXj) follows

Bx; U%@ 0

s ef] ]
By; 08x; +1; 0 0129_

Furthermore, there exists positive constants | and u such that 7% < ag(j <

j=1,...,p.

Assumption S2 (Variance stabilization) There ezists a variance stabilizing quantity ay and a
vector T € R in which each component is independent of {(u;, Vj)}jesA and uniformly bounded

away from infinity in probability in the sense that

sup |ay - E* [Agl '@jb} - Tj‘ = 0p(1),

JESA

where Ap = 3 1cs, Wb - (/Bgfk,RB - a-\g(k,RB)/U%k’ and

wh, LT =0) if wh, > 1,
wjb =
0 if w, = 0.

In addition, there is no dominating instrument in the sense that

2
maX;es, BX]- P

= 0.
ZjES)\ '83(3

Assumption S3 (Negligible invalid IV induced bias) There is negligible bias induced by

20



potential imperfect screening of invalid IVs after bootstrap aggregation in the sense that

ax * — i~ —~
mE [Ab ! Z BXj,ma Ty wjb/a-2ij| = Op(l)-
JESA

Assumption S4 (Instrument Selection) Define n = mini<j<,7; and 7 = maxi<j<pn;, then

both n and 1 are bounded and bounded away from zero.

S.4.2 Proof

We begin by decomposing W(G — ) and want to show that there is a leading term in the
decomposition converging to a Gaussian distribution. While the remained terms converges to zero

in probability. We notice that

a) ~ ay ~
—L (0 —0)) = —=—— E*|0, — 0y].
T'm( 0) TN [b o}

Here

0y — 0o :Ab—l{ Z 7lj/U%- + Z BX]-’RB 'Tj/ﬁ%j}

JE€V JEV
-1 ~ o~ 2 ~ 7 2
{ Z wjb'uj/UYj + Z Wib * BX; g 'Tj/UYJ}-
JESA JESA

where i; = Bx; - (vj =60 uj) + (v uj — b - (uj2 — Gg(j,RB)) and

wi, 1T =0) ifwj, > 1,
Wip =

We then can decompose m(@ 0y) into two terms:

—~ ~ 2 -1 ~ ) 2
(0 00 wjb:| : uj/JY + Z Wyp - ﬁXj,RB : T]'/O-Yj

—— > E +—2FE* |4
S\ KA Pt |: 7 S\ R\ |: s,
I (In)

VSN RX
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Assumption S3 shows that the second term in the above formula satisfies (II) = 0,(1).

For the term (I), we further decompose it as

Z [ @jb] /oy,

jES
ZTJ u]/UY
JES
(L1)
\/7 Z {a)\ E* |:A 1 @]b] —Tj} 'ﬂj/O')Z/j .

JESA

(1.2)

Here (I.2) has the following upper bounds,

1
(I1.2) < sup |ay - E* [A;l : @jb] - Tj‘ e iy )0t
JESX VEX TR jezsz ’

Under Assumption S2, we can prove (1.2) = op(1).

Combining all the above results, we have

ay ~ 1
——(0—6y) = —— E T Uj+ o0
5/\.,%/\( 0) Sy Fox = % p( )-

Using the proof of Theorem 1 in [33], we can show that when Assumption S1 and Assumption S4
hold and =% ditional on the sel S
old an m 0 conditional on the selection event Sy, \/W > jesy i 1; converges to

a Gaussian distribution as s P 50 and ’“ B .

Therefore, we can conclude that \/%(9 — 0p) converges to a Gaussian distribution.

S.4.3 Verifying the Assumption S2 in the case with perfect screening property

To cast more insights into Assumption S2, we next consider a special case where perfect IV screening

is achieved. In the case of perfect IV screening, we have

2
Zwkb 5XkRB O—Xk,RB)/O—Yj'

keVy

In what follows, we argue that Assumption S2 holds for both valid and invalid IVs in Sy:

22



e For valid IVs in V) (V, is the collection of all valid IVs in S,), we define

*
wjb

Tj:a)\-IE*[

}7 ax = Z Bg(k/o'}%k,

2 2
ZkEVA w;::b ’ /BXk/O-Yk keVy

and we have 7; independent of {(u;,v;)} In this context, we have @ = w}, and can

JESN®
show that

‘a)\ - E* [Ab_l 'T/U\jb} - Tj‘ = ‘a)\ - E* [Ab_l 'w;b} - Tj’ = o0p(1).

For this bound to hold uniformly for j € V) as stated in the assumption, given that w;.‘b follows
a multinomial distribution with an equal mean, we conjecture that this condition is likely to
hold as long as Ay converges to a center that is independent of j. In fact, under appropriate
conditions (See Section S.4.4 in the Supplement Material for full theoretical justifications),

we can show that,

Ay =" B, /0%, - (1+0p(1)),

keVy

which is indeed independent of j.
e For invalid IV j € S)/V)\, under perfect screening property, we have 7, = 0 and therefore

Wi, = 0. Set 7; = 0 for j € S\/Vy, we have

sup
JESA/VA

ax B A7 ] - Tj\ = 0,(1).

Combining these two parts of results, we can verify that the Assumption S2 is satisfied.

S.4.4 The asymptotic analysis of A, under perfect screening property

Notice that

22 ~2 2
A= wiy (Bme — 0%,m0) 0%,
IIS%N
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We want to show Ap =3 ), ﬂg(k / a%,k - (14 0p(1)) under these two conditions

maxpey, f%, 0 ang 2 mEkeYy (8%, — 3%, RB)/O'%- - B%./o%;]

ZkEVA Bg(k Zk)EVA BXk/ Y,

J

= o0p(1).

To prove this result, we begin with the following decomposition,

2 ~
=D BR/ot = D0 win (B, — % m) 0%, — D wiy B 0%+ D wiy - By, /0%, = Y B /ot

kEV) kEV) kEV) kEV) kEV)
=) wiy- (B, — G%.ne)/ 0%, — > wiy - B /0%, + Y (wiy — 1) - 8%, /0%,
kEV) keVy keVy
2 a2 2 2 2 2 2
= > wiy (B, — Fme) /%, — B /o3 ) + D0 (i — 1) %, /ot
keVy keVa

It suffices to prove the two terms on the right-hand side are of the asymptotic order o, (> keVs ﬁg(k / O’%k ).

Notice that [w],, ..., w}, ;| follows a multinomial distribution with E[wy ;] =1 for all k € Sy and
. 1 1
Varfwg,| = —-(1——), forall k € Sy,
’ SA SA

1
Cov(w]y, wiy) = i for all 4, j € Sy such that i # j.

ZkevA (wip— )ﬁxk/ayk .
e To show Sven, P o = 0p(1),

we have Yyey, (why, — 1)+ 8%, /03, = Op(y/Var[Syey, (wf, = 1) - 8%, /0,]) and

Var( 3 (wiy ~ 1) B fod) = 3 (- ) Fr/od )t = - S0 (Ghfoh) - (5 /oh)

kEV) keEVy 1,JEVN, 1#]
Z(BX/ Yk o Z/BXk/UYk
keVy kGVA
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Notice that

Var(Y ey, (Wi, —1) - 6%, /03] _ Y kevs (B%, /0%.)% = o= Crev, B, /0%,)°
(XCkew, 5%, /0%, )? (Xkev, B%,/0%.)?
C hen (B, f0%)? 1

B (ZkevA ngk/ff%k)z S\

2 2 2 2
maX;cy, BXk/UYk ) Zkel& 5Xk/UYk 1

B (XCkew, B, /0%.)? S\
maxjev)\ Bgfk/o—}%k o i

ZkGVA Bg(k/o-%k 3)‘7

if we have
2
maxiey, Bx,

—0
2 Y
ZkEV)\ /GXk

ZkGVA (w;:b ) Bxk/UYk . .
2kev, ’BXk /ng = Op( ) directly follows.

32 ~2 2 2 2
Zkev)\ Wy ((ﬁxk *ka,ma)/gyk *Bxk /Uyk)
2 2
ZkevA Bxk/ayk

e To show = 0p(1), we further decompose it into two terms

Ekev,\ (wip — 1) - ((Bgfk ka RB)/UYk 53{;@/052@) zkew ((Bxk JXk RB)/UYk Bg(k/aisz)

Zkew /BXk/ Yy, Zkem Bxk/‘fyk

B2 _52 2 2 2
Zkev,\ ((BXk _UXk,RB)/UYk _5Xk /UYk)
ZkEVA B?(k/"QYk

mental Material of [33].

= 0p(1) can directly follow from Lemma S.13 of the Supple-

Srevy (i1 (B, %, RB>/o%k—ﬁ§k/a%k)

2kevy ﬁXk/ Yy,

To prove = 0p(1), we use

Zkew (wip —1) - ((B\g(k UXk RB)/UYk 6%@/”?@)
Zkem fBXk/ Y
E| Y ey, (i — 1) - ((B%, — 5%, RB>/ayk % /0% )|
Zkem Bxk/ Y},

= Op( )-
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Notice that

El > (wiy— 1) (B, — 6%,mm)/0% — B3, /0%,)]

TSN
< max |(B%, — 8%me) /0%, — 8%, /0%, ] - D Elwjy — 1],
kEV)
1
and Elwg, — 1| =E(wg, — 1) +2 - Plwy, =0) =2- (1 — —).
Sx

If we have

vy - maxpey, [(8%, — 0%, zs)/0%, — 8%, /0]

ZkGVA 5Xk/o-Yk

= op(1).

Zkevk(wa_l)‘((EXk ka RB)/JYk 5xk/ yk)

Yrev, 8%, /9%, = 0p(1) and therefore

Then can show

Zkew ﬁxk/ Yi

= o0p(1).
Combining all these results, we have Ay =, -y, ﬁ%k/cr%k (14 0p(1)).

S.5 Invalid IV screening consistency

In this section, we show that under Conditions 1-7, the proposed invalid IV screening procedure is

“nearly perfect” as sy goes to infinity.

S.5.1 Notations

We first introduce notations to be used in the sufficient conditions and our proofs below:

e The correct set of valid IVs in Sy:
V)\:{jES)\Z ,BXJ- %OandnzO}.

e Cardinality of the set of valid IVs: vy = |V}].
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e The selected set of valid IVs:
9,\:{3': ?j:OandjES,\}.

e Cardinality of the set of selected valid IVs: Oy = [Vy].
e For any V C S), we use the following notation:

— Cardinality of the set: v = |V].

B%.
— The measure of average instrument strength of V: ky(V) =2 3° G—);]
jev Y
r2

— The measure of average pleiotropic effects of V: ry(V) = 1 3> —F.

g
JEV Y

— Correlation between instrument strength and pleiotropic effects of ¥V when V has at least

one non-zero 7;:

p(v):CorrZ({/BXj}jev’{rj}jEV>: < e

To identify invalid IVs, we use the following measurement error models.
By, =0-Bx; +1j+vj Bx;m=08x,+uj JEOSi

and let ny = ny = n be the sample sizes of the two GWAS summary datasets for X and Y,
respectively.

The invalid IV screening is obtained by solving

~

egﬁé}}] l(07 {Tj}jESA ) {/BY]WUY]'?ﬁXj’RB? O-Xj’RB}jGS)\), S't' Z ]17"]':0 = .

JESA
where
-~ =~ 2 ~2
~ ~ ~ (By; — 0 Bx; 0 — 75)° 0°- 0%,
1(9, {rj}jESA , {ﬁyj,ayj,,@)(jm,axj’w} s ) = Z J = J,RB _ Z TJRB . ]lTj:(]
TEON s, Y; JESA Y;
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Here 1(-) is the indicator function and v is a tuning parameter representing the unknown number

of valid IVs. We propose a generalized Bayesian Information Criterion(GBIC) to select the best v:

~

GBIC(v) = 10,47} jes, - { By o) B axm}j )+ sy = ).

€O

Then we select ¥ = argmin GBIC(v) and estimate V) = {j: 7j5 =0and j € Sy}, which is the
v

set of the estimated invalid IVs..

S.5.2 Sufficient conditions

2 2

Ox .
Condition 1 (Bound of Orlicz norm) Fiz \, X]’RB 15 a sub-exponential random variable

Eg(v —Ug(‘
for all j € Sy and we have || 72 ||¢2, IS HW ||\/ ||w2, | JRB||w2, I o e
J

bounded away from oo uniformly for all j € S,.

This condition is a technical condition. It places some restrictions on the tail distributions of

the noise terms, aiming to ensure that they have good concentration behaviors.

Condition 2 (Orders of the variances and sample sizes) There exist positive constants m

and M such that we have "+ < Ugfj , 052,3, < % forj=1,...p

In this condition, we require the variances of both E x; and Byj have the orders % uniformly
for all j € Sy, which is a normal assumption in two-sample summary Mendelian Randomization

literature.

Condition 3 (Plurality and no perfect correlation) For all V C Sy and V contains at least

one rj # 0, whenever p(V) = 1, we have |Vy| >

; whenever p(V) < 1, we have the correlation
coefficient p(V) < 1 is upper bounded by a constant cy smaller than one.
Here p(V) measures the correlation between instrument strength and pleiotropic effects of V),

which is defined as

p(V) = Corr? <{5Xj bievs {Tj}jEV) = 361;
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This condition is closely related to the plural validity assumption commonly made in two-
sample summary data Mendelian Randomization literature [28, 20], which ensures the uniqueness
and identifiability of the causal effect §. By Cauchy-Schwartz inequality, we can see that p(V) =1

indicates that there exists a ¢ € R such that

/;;ﬁj = c holds for all j € V. If the first part of this
condition does not hold, there will be a V* such that |V*| > |V,| and BTTJ] = ¢ > 0 holds for all
Jj € V*. We expect that the invalid IV screening procedure will tend to screen out S)/V* and
leave V*. Therefore, the sub-sequential causal estimation using V* will be centered around 6y + ¢
instead of 0y, where 0y is the true causal effect. In this case, we fail to identify the true causal
effect. Furthermore, the second part of this condition is to ensure that different clusters of IV set
Ve ={j €S| 5% = ¢} are sufficiently separable, so that there will not be a IV set V* # V)
with p(V*) — 1 selected by the invalid screening procedure. Without this, we might not be able to

distinguish the IV set V* and V.

Condition 4 (Boundedness) For any V € Sy, |0(V)| is uniformly bounded away from oo with

probability goes to 1.
This condition requires that for any subset V C S», the causal estimate

By, Bx

> ST
jeV o3

based on V should not be too large. In fact, when the Condition 1 holds, this condition can be

satisfied in the case that 5% is bounded away from infinity for all j € S) and Bx; is sufficiently

J

separated from 0 for all j € S). To see this, we can decompose @\(V) as follows:

(BoBx;+7)Bx; X,V (BoBx; +rj)uj ujv;
2jev & ev” G 2jev o 2jev or
(V) = g2 52 2

BX BX - Uj X UX —0Xx.
7],113 _ _“jRB __ *j,RB
Z]EV + 2 Z]GV O'%, + Z]EV O'%_ Z]EV 2
J

(oa
Y;

; 5x Bx ;u;
> jev(bo+ 52_) =z + dev Ug -+ > jev(bo + ,BX ) - o—é St ey o
J

2 2_ 2 2

B ui—o% TX;pe 7X;
X J J.RB _TJRB __ j.RB
Z]EV + 22]6]} a’?, + Z]EV a'?/. EjGV 2
J

If m}gn |ﬁXj] is is sufficiently separated from 0 , with Condition 1, we can verify that there
JESA
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2

exists a ¢ > 0 such that the denominator is uniformly larger than ¢ - > 34 with probability

JjeEV o'%,_
J
going to one for any possible V. Similarly, we can also show that when max ]%] is bounded away
JEOA J
B%.
from infinity, there exists a C' > 0 such that the numerator is bounded away from C - > . L
JEV 7y,

~

with probability going to one for any possible V. Therefore, we can verify that |#()V)]| is uniformly

bounded away from oo with probability going to one.

Condition 5 (Separation of r; # 0 and 0)

ol
Sl

K
H'/—’

) (8)\ . ln(sA))
~ min _7; > max {—1
JESx, 1;7#0 n2

In this condition, we require the pleiotropy effects r; # 0 of invalid IVs to be bounded away
from 0. In this case, our invalid IV screening procedure will be able to distinguish invalid IVs
and valid IVs. This condition is similar to the "beta-min” condition in the high-dimension linear
regression setting. The only difference is that it is made in r; instead of the parameter of interest
tp. Without this condition, we will not be able to screen out some invalid IVs with r; close to 0 in

the invalid IV screening procedure, and the perfect screening property will not hold.

Condition 6 (The order of vy) The number of valid IVs has the same order of sx. In other
words, ;’—i is bounded away from zero. There exists a constant ¢ such that 0 < ¢; < 1. For all

VY C Sy containing at least one nonzero element r; # 0, whenever p(V) = 1, it holds that v < ¢y -vy.

The first part of this condition requires that the number of valid IVs in Sy should be sufficiently
large. To be specific, it should be of the same order as the total number of IVs in §y. This condition
can be further weakened by adjusting the penalized coefficient of GBIC. The second part of this

condition imposes constraints on the cardinality of the cluster {j € S,| BT;_ = c}. It requires for
J

any ¢ # 0, the cardinality of the IV clusters {j € S,\\% = ¢} should be sufficiently separated from
J
the total number of valid IVs vy so that the algorithm will not fail to identify the true valid IV set
V. If there exists a ¢y # 0 such that the cardinality of the IV clusters {j € 8,\\% = cp} is very
J

close to vy, then the algorithm might fail to distinguish {j € SA‘,B% = ¢o} and the valid IV set V.
i
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Condition 7 (high dimension BIC)

Rn

——————5 =0 and K, > In(sy).
n- min 7

JESN, 170 7

Condition 7* (high dimension BIC)

Rn

.3 —0 and Kp > S) - 11'1(8)\).
n- min rs
JESH, 'f'j?éo J

S.5.3 Theoretical Results

Define a collection of set
Viatia = {V[VC Sy, rj=0forall j €V, and [V|>c1- |[V)|}.

Here ¢; is the constant that we introduce in Condition 6.

Theorem S1 Under Condition 1-7, our IV screening procedure can consistently select the sets

wside Vya1iq. Mathematically, this property is expressed as:
]P)(i)\)\ € VValid) — ]., as s) — 0Q.

where 9>\ represents the set of IVs selected by the screening procedure.

Theorem S2 Under Condition 1-6 and Condition 7°, our IV screening procedure can consistently

select the complete set of valid IVs Vy. Mathematically, this property is expressed as:
}P’O/})\ =V\) = 1, as sy — oo.

where 17,\ represents the set of 1Vs selected by the screening procedure.
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S.5.4 Proof of Theorem S1

For any V C Sy, we denote a collection of sparse vectors
Ry = {a € RISAxT . a; =0, for j €V, a, #0, for k € VC}

and a function

hV.6) = min ST (0,75 5v,, 07, 5%, 7,00

) ) 2 2 ~2
g 0 =0

o
2% Y

Now we want to show IP(?A ¢ Vya1ia) — 0 as sy — oo by utilizing the following inequality:

P(i})\ ¢ Vyalia) = P( min min h(V,0) — Ky, - v] < m'ﬂ% h(Vy,0) — ki, - U,\>

min
VENL,w<sx " |[V|=v,V¢Va114 OER 0e
< U P(min h(V,0) — kp - |V| <minh(Vy,0) — &y, - U/\)
0eR 0eR
Vgs/\vvévvalid

S\
- vz:l (UA) |v‘:v%2)\{;validp(glelﬂlgh(v’ 0) “hn VS h(V)\’ 00) — Rp - ’U/\)

SX
- ;SA |V\:$2}\gvand (Iglel]ll%} (V,0) = fin - v < h(Va, b0) — m)

< Vg’?im el F1)in(sy) -P(ropeiﬂrg h(V,0) — Ky - |V| < h(Vr,00) — Ep - v,\)

— e(satD)in(sa) ' *0) — g -0 — Ky -
=e P(Iglelﬂgh(]/ 0) — Ky - 0" < h(Vy,00) — K v,\>.

(S1)
where V* = argmax e($xT1)#n(s) ~IP’(rnin h(V,0) — kn - |V]| < h(Vr,00) — K, - v,\> and v* = |V*|.
V¢vvalld HER
This is because the above inequality implies that as long as we show that
el F1)n(sy) -]P’(ropiﬂg h(V*,0) — kp - v* < h(Vy,00) — K, - 11)\> — 0. (S2)
€

then }P’(]A})\ ¢ Vya1ia) — 0 holds. Here, we also note that the first equation in Eq (S1) follows from
the definition of the optimization problem defined in Equation 2 in the manuscript, the second to

the fifth inequalities in Eq (S1) hold following raniﬂrg h(Vx,0) < h(Va,00), () < 4 and some basic
€
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calculations.

To prove Equation (2) goes to 0, we discuss V* ¢ V114 in three different cases.
o [V*| =v* >wy and V* # V,

o ¢ -vy < V¥ <oy but p(V*) < 1,

o |V¥| =v*<cy-uy.

In each case, we show e(sx1)1n(sx) -IP( rgniﬂg{l h(V*,0) — kp-v* < h(Vy,00) — ﬁn-v)\> — 0 and therefore
€

(2) holds uniformly for all V* C Sy and V* # V.

S.5.4.1 Case 1: |[V*|=0v* > v\ and V* # V),

To show the above results, we analyze the asymptotic properties of h(Vy, 6p), reniﬂrg h(V*,0) and k.
€
We start with h(Vy,6y) and decompose it below following our notation defined in Section S.5.1.
(By; — b0 - Bx;)? (B, — Bx,)? — 5%

h(Vx,00) = Y —~ +68- .

ag
JEVA Y JEVA Y

— 20, - Z (BY]- — 0o - 5)(]-)(3)(].38 ~ Bx,)

2
ag
JEVA Y]
2 2 ~2
B Dl NN ol Be TR LU (s3)
ag ag (o}
JEVA }/J JEVN }/J JEVA YJ

Next, we study the asymptotic property of rgniﬂg h(V*,0). We denote §(V*) = arg Ieniﬂlg h(V*,0) and
€ €

decompose h(V*,0(V*)) in a similar way as h(Vy,0p), following our notation defined in Section
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S.5.1.

_ 2 N ) - N2 52 |
h(V*,é\(V*)) _ Z (BY 9(0-2 ) 6X]) +9(V*)2 Z (BX], ﬁ;{;) O-X],RB
JEV* Y; jev* Y;
+ 25(]}*) Z ( (V*) : /BXj - 90 ’ 5X]2_ 7’]) . (/BXj,RB — /BXJ)
jEV* O'Yj

— Qé\(V*) Z (B\Y] — 0o ’BXJ' — Tj)(BXj,RB - BX]')

2

jEV* UY
2 ~2
_ Z (6o - Bx; +7’g+1/23 — (V) - Bx;)? LAV Z Yj 7;7Xj,ma
g g
jevr Y jevr Yi
o) Yo PG Z O IO T o 3 s
: o2 , o2
jEV* Y; JjeEV* Y
(60 - Bx, +1j — O(V* v? (0o - Bx; +1j —O(V*) - Bx;) - v
-y edurny DRSS
u? — 52 (( *)-Bx, — 60 Bx, — ;) - u; ;)
D77 7%\2 J X * X; 0 PX; g ~ ViU
FOVP Y S 20 Y .y —2000) > ot
JEV* Y JEV* Y; JEV* Y;

With these decomposition, the probability in Equation (2) can be rewritten as

(g&g h(V*,0) — kp - v* < h(Vy,00) — K, - 11)\)

© i 60 vi b - ,A+T'—§V* -Bx.) -V
_P(Z 0" ﬂX ]2 ( ) 5X) —|—/€n'(U,\—’U*)§— 7;_22(0 BXJ j 2( ) 6XJ) gy
g ; Oy : o
JEV* Y; jev* Y jevs Y,
2 _ 2 ~9 ) -
2 5 5
JjeEV* UY} jEV* O-Yj jevs O.Yj
. Vil vioo o, w0k ., 0% 0% v,
jeV* %y, JEV Ty; Jevy 9y, vl oy, =t o3,

When [V*| = v* > vy and V* # V), we know that there is at least one r; € V* such that r; # 0.

So p(V*) is well-defined and by Condition 3 we have p(V*) < ¢y. By some calculations, we can see

that
0 + 0o - Bx, +1;—0- r}
Z ( 0- BX Ty — ( ) BX) > min ( 0 5X] Ty — fBX _ Z J *))
o2 0cR o2
% Y a% Y ]GV* j
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with probability 1. Therefore,

Z (Qo'ﬁxj—i-?“j—é\v*

JEV*

with probability 1.

Then under Condition 4, there exists a Cy > 0 such that

P(lgleiﬂrgh(v*ﬁ) — K 0" < h(Wx,00) — K - v)\)
C_o(V*) . 2 _ 2 R 2_ 452
<p( Y oy trs V) P )" ey <= STy § U P
% Ty; Na% 7y; % Ty;
~2 2 -~
O~ OX; s (O(V*) - Bx; — 0o - Bx; — 1) " v; (O(V*) - Bx; — 0o - Bx; — 1) " uy
+ Q(V*)2 J J -9 J J 29(]}*) J J
) Vil U? —o% X m — X Vil
+2000) Y Y J+Z iy Kz g2 ”502 LD ;QJ)
jevr YJ‘ FEVA Y; FEVA j jGVx Yj jeVs Y
2 2
S ]P( Z (90 ﬁX +T]0; 9( ) BX ) — Ky, - ’U . ’U)\ < | Z }_’_ 0()}*)2‘ Z u] QO-XJ',RE‘
JEV* Y; ev* jev= Y
waffr) 3 Lot Pl gy 5 B P P 10 4 affi) Y
2% y; jev y; jEV* %y;
|ZO'X RB_ X]RB|+|Z YJ +02‘Z JRB +00|z Jma_ X]R_B|+260|ZVJUJ)
JEV* JEVA JEVA JEVA JEVA J
0 -0
SP(Z(O/}XH} b )BX)—M v—v,\<|z \+CO\Z
jevs Y; jev* JGV*
_ s — 0
v 3o P ”Br+zco|z — “J| +2 Y C Sﬁx e
% ]EV* UYJ % %y;
— o2
+2co|2”i“ﬂr+|z ST ) 3 B gy T T ag 3 )
jevx Y JEVA JEVA JEV Y JEVA UYJ'
Denote the event
> & 5“”;“ R R RT SEp D IE ) i R
jev 7y, jev* jev=
+Co‘ Z 7RB_ ]RB _’_200‘ Z 0;) /BX U]| 2‘ Z 620 /BX ) V]|
jev* j JEV* GYJ jev* %y;
2
+200|ZV]U]’+|Z |+90|Z ]RB|+00|Z X re JRB’+290|ZVJUJ|
JeEV* Y; JEVA JEVA JEVA JEVA YJ
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as C(V*) and

sy = 3 o s —00) - B,

5 — Ky - (V" —0y),

2% %y;
we have
e < {C§~|Z 5 2 }U{ﬂo Dok UX”B %*)}
% Y; JEVA
— o3 5v RE—UQMB s(V*
U{IZ by 2 }u{@ 0 }u{eo | <m>}
JEV* JEVA Y; JEVA
RE 2_]RB 5 V* VJU‘] VJuJ V*
U{mz 2 B >}U{2co|2 > ) }U{%IZ i }
JEV* JEVA J' JjeV* j
OV*)-Bx, — b0 Bx, —15) -vj, _ S(V*
U{ﬂ%}; U‘z . = (10)}
@O(V*) - Bx, — 00 Bx, —15) -uy | _ S(V*
U{200'|j§* Ugj . 2 (10)}'

When |[V*| = v* > vy, we know that the number of r; that is not equal to zero for j € V* is at

least v* —wy. Then if —"2——3 — 0 (Condition 7), we have L:ZA) — 0. So there exists a
_min >
JESH, Tj;é(J ij jev* UYj
¢ > 0 such that
(B0 - Bx, + 75— 0(V") - Bx;,)* i
5(V*):Z J - J —’fn'(v*—%\)zzgié'c'
jevs Y; jevs 7Y
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uniformly holds for all |[V*| = v* > vy and V* # V). Then P(C(V*)) is bounded by

S(CHp pi e TIEKS S AP H] ppe s SR Sl
e 10 5. 7%, €V, 0126' 10 55 o,
re(ch 3 o Bm s £ 5 Y o) 3o B ey 5 )
2 = = 2
jeys Ty; 10 jey* FEV 0 Y 10 jey* Ty;
V2 032, c 72 v 032/_ c 72
(X g D) (I S P g X )
A R e ¥ S R = ¢
Vil 2 Vil c r?
R0 2 2 g 2 ) TR | T 5 X )
JjeVN Y jev Y; jevs Y jevs Y;
. — 6y - S T 1 O - 4+ _é\]}* . )2
ep(e) Y OO Pt P ) s G v PO BNR )
jevr Y; jevr Y;
Y — 00 By, — 1) - us On - Bx. L1 — O(V*) - By )2
+1P>(2Co 1> OV P, 03 P, ~13) UJ\Z%O(Z o BXJM]Gz V) Px,) —/in'(v*—v)\))).
% Y; jev* Y;

Using Lemma 1, we know that there exists a ¢’ > 0 such that the first eight terms are bounded by

—c’-min{m v*r2 (V) ’U*-U(V*)}
DY . We also have

2-e
(B(v*) - Bx, — b0 Bx, = 15) - uy (B() - Bx, =60 Bx, = mi)* |~
‘ Z o2 ‘ Z 72 Sz an
jevr Y jev* Y; jev+ " Y;
'y O, =00 B, =) vy 5 (B(v) - Bx, =00 Bx, =) | = ¥
D) = 2 2
2% Ty; jevs Ty; jevr Ty;
AV*- .—0gp- —7i) s *
That means there exists a ¢’ > 0 such that }P’(2| > 60 Bx, 020 Px; =rs) J‘ > 5% )> is further
JEV* Yj
V2 2
bounded by IF’( o> Y T”) through
jev+ 7Y jev+ 7Y;
O(V*) - Bx, — 00 Bx, —15) v (60 - Bx, +1; —0(V*) - Bx;,)? .
]P’(Q‘Z 2 ]‘_ (Z J ]2 J —/Qn.(’u —’U)\)))
< %, 1005 %y,

(00-Bx; +75—-0(V*) Bx,)? \

( Z 0'PX 102 Xi) K, - (U _ v)\))

JEV* Y )
Z (GO-BXj+rj;§(V*).5Xj)2

g
jev* Y
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Similarly,

P<200"Z (e(v*).ng_eg.ﬁxj—rj)-uj’Z110(2 (6o - Bx, +7«];0( ") - Bx,)? ﬂn‘(v*w)))

jeV* %Y, jev %y;
r2
<H(YHeo ¥ )
JEV* j jev: Y
—c’-min { m v*r2 (V) v*-r/\(V*)}
Using Lemma 1, we can also show that these two terms are bounded by 2-e DY .

To prove e(sx+1)n(s2) -P(Ieniulg h(V*,0) — Ky - v* < h(Vy,0p) — Kn - v/\) — 0 for any V* C S such
€

that |V*| = v* > vy, we only need to show

v*2<r§(V*)

70’-min{v*-r§(v*), v*ry(V*), = }
A — 0.

9e(sat1)In(sy) | o

Using v* > vy, it suffices to show

2e(s>\+1)-ln(s>\) . e—c’-min{v*wi(V*), fu*-r)\(V*)} 0.

We prove this formula in Lemma 2 and conclude that

elsrt1)in(sy) -]P’(mln h(V*,0) — Ky, - v* < h(Vy,6p) — K, - U)\) — 0.
0eR

uniformly for all V* C Sy such that [V*| = v* > vy and V* # V).

S.5.4.2 Case 2: When ¢ -v) < |[V*| < vy but p(V*) <1

When ¢; -vy < [V*| < vy but p(V*) < 1, we can know from Condition 3 that p(V*) < ¢p. Therefore,

2

2(90.5Xj+7'j(j;9( —Z i (1 = cp).

jey* Yj ev*
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with probability 1. Similarly, under Condition 4, as n — oo, there exists a Cy > 0 such that

. * _ pF <
P(Iglelﬂrgh(v ,0) — Kn - 0" < h(Vy, 6)

P(Z (eo'ﬁxj-f—Tj—é\V

— Rnp ~U)\)

> ( *)BXJ) —Kln'(’U*—U)\)S

< ~ | Z }+CO| Z e
jevr Yj jev* jev
- —0 — 0
+Co‘z O%Xim ~ "Xjm +2CO|Z ;) Bx; — Uj| 2‘2 ;J Bx; —1j) - VJ|
jev* j ]EV* GYJ‘ jev* %y;
_ o2
+2CO|ZVJU]’+|Z ‘+90|Z ]RE|+00’Z X re ]RB’+290|ZVJu])
JeEV* Y; JEVA JEVA JEVA JEVA ki
=P(C(V*)).
We also have
. (00 - Bx, + 15— B(V*) - Bx,)? . (60 - Bx, + 15— 6(V*) - Bx,)? r
vy =Y I — (U —0n) > Y Lt >N (1)
jev* 7y; jev* 7y; jev+ 7Y;
This is because v* < vy and Ky, - (v —vy) < 0.
Then the probability P(C(V*)) is bounded by
RB 1- Co RB 1- o sz
(‘Z 2| > 0 2 ,)HP)(‘Z | 2 10 Z@)
JEV* ]EV* JEVA JEV* J
- g{ 1— Co Z 2 Z - 2 1— C Z 7"2-
( jRB j,RB‘> j)—i-P(‘ jRB gRB‘> 73)
= 2 = 2
JEV* Y; 10 ]EV* UY ]EV,\ Y; 10 JEV* UYJ’
0> g |>1‘°‘OZ )m(yz 1—0027“?>
= 10 _ 10 4= o2
JEV* EV* Y JEVA JEV* J
2
Vjug — Cp 5 ViU — Cp 5
+P<2|Z |— 10 a,)+P<2|Z ,‘— ZF)
JEVN Y JEV* JEV* Y;
—HP’(Q ) Bx; — 0o Bx; — VJ‘ 2(90 Bx; +r;—0(VY) - /3x)>
2 = 2
JEV* UYJ 10 JEV* JYJ’
+IP’<2 ) - Bx; gﬂ'ﬁxj_rj)'u‘j}>iz (90-ﬁxj+rj—9(v*)-ﬁxj)2)
o3 ~ 10 ol '
JjeEV* J JjeEV* J
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Knowing that

(V) - Bx; — 0o Bx; —15) - uy < (V) - Bx; —bo - Bx, —1j)? uj

by & B> = t
jevr Y; % Y; jevs T Y;
(6(v*) - Bx, =00 Bx, =) -vj | _ (B(v*) - Bx, — b Bx, —1y)? v}

‘ Z o2 ’ = Z g2 O_T
jev* Y jev* Y; jev* " Y;

We can similarly show that there exists a ¢” > 0 such that the last two terms are further bounded

by
2
j

(Y gz T ) (S = S )
: ; Y,

o2 2
Yj jev* Y jevs Y

Using Lemma 1, we know that there exists a ¢ > 0 such that all these terms are bounded by

9. e—c’~min {%, vrr (V*), v*~r/\(V*)}
To prove e(sat1)dn(sy) -P<Igli]§} h(V*,0) — kp - v* < h(Vy,00) — kn, - 1))\) — 0 for any V* such that
€

c1 - vy < [V <wy but p(V*) < 1, we only need to show

*2 2 *
oo * .2 * * * v <r>\(V )
26(5)\+1)'ln(8>\) e c mm{v r3(V*), v*ra(V*), N } 0.

Knowing that [V*| < vy, it suffices to show that

*2 2 *
. veers (VT
—cm * V* , A
26(3)\+1)-ln(8>\) e N m{v ) U } 0.

We prove this formula in Lemma 2 and conclude that

(sx+1)-In(sx) | i *0) — ko -0t — Kk
e ]P’(ropelﬂlgh(]/ ,0) — Ky - 0" < h(Vy,00) — kn U)\>—>O.

uniformly for all V* C Sy such that ¢1 - vy < [V*| < vy but p(V*) < 1.
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S.5.4.3 Case 3: When |V*| =0v* < ¢ - vy

When v* < ¢; - vy, we decompose h(V*, é\(V*)) in a different way,

~ ~ -~ ~2
~ y, —0(V*) - Bx, 2 ~ Ox.
h(V*,H(V*)) — Z (B j (0-2) B ],RB) _ G(V*)2 Z G;,RB
jevr Y; jev: Y
~2 2
(51/ —0V*) - Bx,m)? OX.m — OX; ~
_ Z 0-2 4,RB _ G(V*)Q Z ],B.BO-2 J,RB H(V*)Q
jev* Y jev* Y
Under Condition 4, there exists a Cy > 0 such that
i *O) e Lt < .
P(rglelﬂg{lh(v ,0) — Ky - 0" < h(Va,00) — Kk v)\)
Bj_é\V* 'Bjma2 % D7 9% aZjRB_UszB N7 9
SP(Z(Y (02) Xin) +,@n.(w—v>sa(m22%+e(vf
jev* Y % Y; j€
2 i "X 2 agfj,ma B Ug{j.ma Viuj
+Z +002 7GOZT72QOZ 0_2 )
JEVA Y; JEVA JEVA Y jeva Y
ey 0% —o%.
SP( Z (ﬁY ( ) ﬁX] RB) —‘r:‘in'(?},\—v*) ch‘ Z X rB > X],RB’_’_COZ.,U*
jEV* JY_;’ jev* Ty;
o2
RB JRB - JRB Viu
D i ARYTD o) e EIRHD i |+2eo|z;f)
JEVA JEVA 7€V)\ JEVA Y;
52 _
S]P)(/in-(’(})\—’l}) c2. U<CO’ZM’ ‘Z
jGV* Y JEVA Y;
2
+90|Z m|+aoyz JRBy+zoo|Z”J“J)
JEVA JEVA JEVA ij
Denote the event
2 _
fn - (0x —v") = Ca 0" < C3-| Y Xsne J“!HZ
Jjev* JEVA Y
RB a-\g( RB O-g(-RB ViU
WHD 3w T rz—ﬂ i 4agy | Y )
JEVA JEVN Y] JEVA Y;
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as D(V*), we have

JEVN Y
a\g('RB_Ugf RB 1
USO8 | D0 22 > = (- (vn —v7) = CF - v7)
JEVA UYj
2 2
g 1
7 Y.
U ‘Z 2 3125 (Kn (U)\—v)—C’g v*)
JEVA Y;
0% — X 1
UG [ 22 > o (- (02— v%) = CGF )
% Y

Using v* < ¢1 - v) and Condition 7, we know that there must be a ¢ > 0 such that
fin - (U —0*) = C2 - v* > hy- (1 —c1) vy — CE-v* > " - kp - vy

then the probability P(D(V*)) is bounded by

2 2 ~2 2
us — o i o — O /1
i T o%, c Xim — OX;, c
[[D(@%.‘ E,TNE‘ Z?.ﬁn.w>+p(co2.}§: %‘ > ko
JEVA Y jev= Y;
~2 2
Fod 1" 1"
X; X & viu c
+P<0(2) | E 258 3 JRB‘ > ? Kn UA) +P<290 ‘ E ]2]‘ > g Rn ’U,\)
g X
JEV YJ JEV YJ
2 2
v:—o "
7 Y; C
FP(| 2 P2 T )
JEV J

Using Lemma 1, we know that there exists a ¢ > 0 such that the these five terms are bounded by

K%vz
2-efcl'min{”’21”’ Tl ””'”A}. To prove e(S*H)'l”(S*)-P(Ieniﬁl h(V*,0) —kp-v* < h(VA,eo)—Hn‘U)\) —
€

0, we only need to show

26(5/\+1)~ln(s,\) . e—C,'Hn~U/\ 0.
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We can prove this by Lemma 3 and conclude that e(s»1)4n(s3) -IF’( raniﬂrg h(V*,0)—kp-v* < h(Vy,6p)—
€

Kn * v>\> — 0 uniformly for all V* C S, such that v* < ¢; - vy.
Therefore, we conclude that e(s>1)n(sx) -]P(lgliﬂlg h(V*,0) — kn - v* < h(Vy,00) — K, - v)\> — 0
€
uniformly for all V* C Sy such that V* # V.

S.5.5 Proof of Perfect Screening Property

Following the similar procedure in Section 3.4, for any V C Sy, we denote a function

By —0-Bx...)2— 0252
TR S .

g
jev Y

and show

]P’(lA),\ #Vy) < e(sat1)in(sy) 'P(Igliﬁg h(V*,0) — Ky, - 0" < h(Vy,6p) — K, - v>\>.
€

where V* = argmax e(sx+1)17(51) -]P’(min h(V,0) — ky - V| < h(Vr,00) — Ep - 7))\) and v* = |V*|.
VLY 0eR
As long as we show that

(sx+1)-In(sy) | ; * _ C* _ )
e ]P’(ggﬁr{lh(v ,0) — Ky - 0" < h(Vy,00) — R, U)\> — 0.

then P(Vy # Vy) — 0 holds.

To prove it, we discuss V* in two different cases.
o |V =v*>wy and V* # V),
o [V =0v* <.

In each case, we show e(sxT1)1n(sx) ']P)(Iéﬂiﬁlg h(V*,0) — k- v* < h(Vy,00) — /{n'w\) — 0 and therefore
€

P(V # Vy) — 0 holds.

S.5.5.1 Case 1: |V*|=0v* > vy and V* # V)

The proof of this section is the same as the one in Section 3.4.1.
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S.5.5.2 Case 2: When |V*| = v* < v

When v* < vy, following the proof in Section 3.4.3, we show

P(min h(V*,6) = i - 0" < h(Va,00) = w)

S]P(Kn'(v)\_v*) *<OO2’Z JRB_ JRB |Z

JEV* Y;j JEVA Y;j

72
oY )y TR f“+2eo|§:”;“j)

JEVA Y JEVA Y JEVA Y

— P(D(V*)).

Where D(V*) is the event

Kp - (vy —0%) — *<C’0 ‘Z ]RB_ ]RB ‘Z

JEV* Y;j JEVA Y
_ 2
+03 - |Z ”‘B|+90 IZ Xom R a4 9g - \Z”ﬂ“ﬂ\,
JEVA JEVA Yj JEV YJ’
We have
uj — ok 1
D(V*) C 9(2] } Z J 5 JRBl > g . (K,n (/U)\ _,U*) _Cg ’U*)
JEVA Y
U200 | 32 25 > 1y (o — 07) — G- 0")
FEVA Ty; 5
0%~ 0%, 1
U 98 }Z j,RB S J,RB}Zg (/‘Gn (’U)\—v)—cg U*)
JEVA UYJ
V2 _ o2 1
U T2 5 (- (o = 07) = G5 - 07)
JEVA Y
0%~ X 1
U Cg |Z 2 2 JRB‘Z* (Kn (U)\—U*)—Cg v")
jev %y; 5

Using v* < vy and Condition 7*, we know that there must be a ¢ > 0 such that

Fon - (Uy —0*) = C2 0" >k —C2 0" > " Ry
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then the probability P(D(V*)) is bounded by

2 2 2

(1 S ) o(eh 3 B B 2
JEVN O-YJ' JEV* Y;
~2 2 " o /"
_Hp(gg.‘ ZM‘E%'“n>+P(290" ZL;LJ‘E%K”)
JEVA UY] JEVA UY]
2 _ 52 i
_’_P(‘ZV] 2O-YJ|207 ’in)
JEVA Y g

Using Lemma 1, We know that there exists a ¢’ > 0 such that the these five terms are bounded by

rp
—<min 38, S8 } To prove e(sﬁl)'l”(sk)-l[”(gnﬂrgh(v 0) — ki - v* < h(Va, 00) — Fin - v,\) -0,
S

2-e

we only need to show

2 2 2
/ s K K / . K
ge(satn(sy) . —emin {5 T mn} o (sir1)in(sy) | e min {3 mnf

We can prove this by Lemma 3 and conclude that e(®x+1)n(s:).p (Igun h(V*,0) —kp-v* < h(Vy, 6p)—
€R

Kn - v)\> — 0 uniformly for all V* C Sy such that v* < vy.
Therefore, we conclude that e(sx+1)#n(s3) -]P(Ienilg h(V*,0) — k- v* < h(Vy,00) — Kk, - U)\) -0
€
uniformly for all V* C Sy such that V* # V.

S.5.6 Lemmas

Lemma 1 Under Condition 1,

. . . 2 . . .
P(‘ Z %‘ Zt) < 2.€—c-m1n{f}7, t}7 P(‘Z%‘ Zt) S2'6—(:.m1n{:‘)—?,” t}

JEVN Y jev U Y;

2 2
(‘Z Y t>§2‘e—c~min{f;i7 t}7 ]P)(’ZVJ UY‘>[J;> <2 e—len{ “x, }
JEVN Y % O-YJ
2 2
(] Z 21 < g omemn{£. 1} p(‘zw, > 1) < o pmemin {2, ¢}
JEVA jev 7y;
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~2 2
O'Xj,aB - O-Xj,RB| > t) <2. e—omin{%7 t}’ ]P)(‘ Z
)

P13 =

JEVA J V2% J

Lemma 2 Under Condition 2, 5 and 6, we have

In(sy) In(sy)
) — 0, and 2()

— 0.

uniformly holds for |V| > c1 - vy and V # V.

Therefore, when |V| > vy and V # Vy, we have

26(s>\+1)~ln(s>\) . e—c’~min{v-r§(\/), vlrk(V)} 0.

When ¢1 - vy < |V| <wvy and V # V), we have

2.2
s ) vy (V)
26(s>\+1)-ln(3)\) e cmzn{v ra(V), —2A—=

Lemma 3 Under Condition 6 and 7,

Therefore we have

26(s>\+1)-ln(s>\) . e*C/'Nn'UA 0.

~2
O-Xj,R.B o
2
Oy.

oA }—>O.

2
X kB

‘ Z t) S 9. e—c~min{%, t}

Furthermore, under Condition 6 and Condition 7*, which is a stronger condition of k,, we have

12
2e(s>\+1)~ln(5)\) .e—c’-mln{ﬁ, f'in} 0.
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S.5.7 Proof of Lemmas
S.5.7.1 Proof of Lemma 1

We first prove u; is a sub-Gaussian random variable. We know from the definition that the n-th

moment of u; conditional on selection is

sy > 0= = R [T (L 0B 0B w) Y’
E[“f"sf>°]‘msj>0]/oo<y B 1=0 By () + 0 (B, <y>>>

¢ (y) [1 = @ (Bj+(y)) + @ (B)-(y)] dy.

where
_)\+& _)\_ﬂﬁ
ox. OX .
IP’[Sj>O]:<I> _ |+ | —
1+3 1+
and

Bj+(y) =— <ﬁXJ + y> L2

ox;nj Ny 1j

Given that the calculations can be quite involved, we let n; = 1 and 7; = 0 to streamline the

presentation. That is, we consider

EWg1S;>00 1 = s(-Aty) —s(-A-y)"
= - D (—A D(—\— dy.
o P[Sj>o]/_oo (y @(_Mry)Jrq)(_A_y)) cb(y)[ (A +y)+( y)] y
Here
PS; >0/=2-9 <_)‘>
J - \/i .
. Elu? |S;>0] '
Then when n is an odd number, ajf = 0. When n is an even number, we have
E[u}j’Sj>O] 9 00 ¢(—)\+y)—¢(—/\—y) n
= - D (—A D(—N— dy.
o P[Sj>o]/ (y @(_AJFQH@(_A_Z/)) ¢(y)[ (=A+y)+2( y)] y
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S(A+Y) —d(A-y) _d(A+y—6(A-y) _ é(A+y) 1o
e

P(-A+y)+P(-A—y) P(=A)+P(=A) T O(-N)+P(=N) T P(=N)+D(-N)
E[u,|S; > 0] 2 S i ¢ (A +y) — —)\"
0%, _P[5j>0]/o (y_ D (—A+y) +<I> y)> P [2 ATy + e (A y>]dy
2 = ¢(=A+y) - -9 \"
+]P’[Sj>0]/m (y_ D (—X+y) +<1> y> o) |2(A+y) + (- )‘_y)}dy

1/7/27 n
2 AN 1/V2m
SIP’[Sj>0]/o <<I>(—/\)+<I>(—)\)> 6() [2(A+9)+@ (A —y) [dy

2 0 .

+[S>O]/ %@ A)y ¢(y)[q’(—)\—|—y)+q)(_/\_y)]dy

<5 11, <<I><—A>+<I><—A>> 6 [(A+9) +8(A-y) |dy
2

+

W/Oooy%(y) [(I)(_)\-i-y)-l-@(—)\—y)}dy

1/v2r ! ) <

:2<(I)(_)\)+(I)(_)\)> +P[Sj>0]/0 Y (b(y) |:CI)(_)\+y)+(I>(—)\—y):|dy
1/V2n " 1 o

= (@(—A)Jr(p(_A)) +]P>[Sj>0]/ooy ¢ (y) dy.

Then by the property of sub-Gaussian random variable, we know that there exists a K such

that

([ wota)’ < wvi

for any n > 1.

E[u%. |S; > 0] 1/v/27 ! .
oX; = (Q(_)\)—F‘I)(—)\)) +2.¢,(—/\> KT en

Then we can know that there exists a K’ > 0 such that

O-TL
X

1
)”gK’-\/ﬁ.
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for any n > 1.
This proves that conditional on re-randomized selection, u; is a sub-Gaussian random variable.
Since v; is a Gaussian random variable, it’s also a sub-Gaussian random variable. Then we know

and V2 are all subexponential random variables.
G
Xjre~ X
0.2

a2
Viuj, uj

Also we know from Condition 1 that is a sub-exponential random variable.

Y.
J
Then by Bernstein’s inequality, we have
—c-min ( t2 t )
it 2. 122112, " maxg 112 11y,
I gz <ze om0
o
JEV Y;
fc-min( 2 : t )

v u b N .
> a2 2112 K2 g 2
JEVy UYj Yo an 1o Mmax; Il o'yj |‘¢2 [l ij H¢2

. 2
[ — —

v;u
= HTHZ Tmax; || =5-L ]y,

(‘ZVJUJ‘ >t) <2.e eV 7%y; 7Y,

JEV YJ
2
—c~min( ¢ ) U )
= H—H Nl max; u—u el
i oy, o
<2-e ! :
. 2 t
—c-min ( 2,2 ’ 12 _52 )
—UY = L2 maxg ll L1y,
(‘ Z ——|z t) <2-e TN i
JEVA Yj
2
—C mln( L ’ L )
V2.7C72 V27O'%
J j J J 2
JEZV)\H o) H’/) max; || 0’%/_ H’¢’2
<2-e / !
. 2
—c-min ( Vgt_g% ) 2t_02 )
2 2 2 i
vi—of, =t LG, maxi |l ]
P(|Y | >t)<2-e ’ ’
g
jev Y;
2
—c min( £ s L )
V202, uj?wv%,
; . )
S %Hi max; || | —5—= : H%/)
JEV A oy 2 Ty, 2
<2.e ’ !
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—cmin( £ L )
i XjRB 2 9 Xjre
>l 5 13, maxq |l > My
]RB JEV oy, 1 oy,
P(| E El>t)<2-e i j
JEVA Y
2
fcmm( ¢ s ¢ )
uz—ag( u2—og2
=N [T B maxg || | B2
. ¥ g P
jEV,\ oy, 2 A 57 2
< 2 .e J J
2
s t t
emin ()
j RB J j RB
ui — ok zvnih] 13, max; || 2R 1,
j,RB . .
(T <. T ;
; Oy
JjEV Y
2
—len( 2t D) 3 2t 2 )
uT —o us —o
JXjmB 4 i XjRB 2
S| T BB maxg || | LR 2
T2 feg 2 o5
J Y Y,
S 2.¢ J J
2
. t t
—c~m1n( §< 2 s g( 2 )
LL 4@@
0% —ag(, P 13, max; | [
(\ 2: Himw K| t> <9.¢ JEVA ¥, v,
JEVA ]
2
—cmin( 5 t 5 s 5 t 5
4 —0o T —0o
S vaRB Xj,RBH4 max; || ijRB X]"RBHQ
) 2 o i )
]EV)\ o o
< 2 - e J J
2
. t t
—c-min ( 2 ) s 52 ) )
~ BB XjRB 2 Xjre  XjRB
0% —o2 5y iR Gy i iy
Xj,rB XjrB jev o3 ¥1 o2 1
P30 P T ) <0 : :
; Oy
% Y;
2
—c-min( > L > s 5 L >
o —0 4 —0
XjiRB  X;RB Xjm  XjRB
S| R, max ] | 5 a[F
: o 2 o
< 2 .e J J

Under Condition 1, we can have the conclusion in Lemma 1.

<‘ Z yjuj‘ >t> ‘e—omin{%,t}’ (|ZVJUJ| >t) —c~min{%,t}'

JEV Y; Jjey Y
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o2 2 2
(} Z Y t) <2. e—c-min{%, t}’ P<| Z V] UY ‘ > t) <9. e—cmm{ t}
JEVA Y; jev UYJ
in {22, ¢} u? —o%.
P(| % g > ) <o P32 2] 2ot
FEV Y] jev Y;
— o2 2 _ 2
<|Z jRB ]RB|>t> _efc-mm{a7 z‘,}7 (‘Z ]RB B‘Zt)SQ' —lel’l{ t}
JEVN Y JjEV Y

S.5.7.2 Proof of Lemma 2

Proof. Without loss of generality, we can assume that 0)29_ = %, then we have

m=iy el i
T =—-Y —>-—-n min ri.
A v =y 0'%/ T JESA, r;7#0 J
Under Condition 5, we have
In(sy) _ _v-ln(sy) < sx - In(sy) 0
ra(V) m min r? " n min 7? '
JESK, mi#0 7 JESK, mj#0 7
In(sy) < In(sy) - v? < s3 - In(sy) 0
(V) ~n? min ! T n? min rd '
jeSy, rj#0 J jeSy, rj#0 J

Notice that when |V| > vy and V # V), under Condition 6, we have

(sx+1)-In(sy)
v-ry(V)

(sx+1)-In(sy) 0 (sx+1)-In(sy) < (sx+1)-In(sy)
g 2

= vy - rA(V) v-ri(V) — ur3(V)

Then we can show

2e(s>\+1)~ln(sA) . e—c’-min{uri(l}), v-rA(V)} 0.
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Notice that when ¢ - vy < |V| < vy and V # V), under Condition 6, we have

(sx+1)-In(sx) _ (sx+1)-In(sy) (sx+1)-In(sy) -va _ (sa+1)-In(sy)

< — 0,

v-ra(V) cr-vy-mA(V) v? - T,Q\(V) TG ri(V)

Then we can show

v2 -r?\ V)

,c.mm{v-m(")’ O\ } — 0.

9e(sat1)In(sy) | o

S.5.7.3 Proof of Lemma 3

Proof. Under Condition 6 and 7 , we know that

Kn > In(sy), and % s bounded away from 0.
S\

Then

(sx+1)-in(sy)
Knp = Ux

— 0.

Then we know

26(s>\+1)-ln(5)\) . e*C/Hn'UA 0.

Under Condition 6 and Condition 7%, we have

(sx+1)-In(sy)

— 0.

Then we know

K2
gelsrt)in(sy) | g=emin {5, m} o
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S.6 An example that Assumption S3 is satisfied without perfect

screening

S.6.1 Main results

With a slight abuse of notation, we consider a special case where the instruments can be divided

into three clusters:

Vi={j: r;=0, fx, = o} with V1| =i,
V2 = {'] : Tj = T2, BX]' - BO} with |V2’ = V9,

V3 = {j : Tj =73, ﬁXj - /80} with |V3’ = V3.

Here, V1 represents the set of valid IVs with r; = 0, and V, represents the set of invalid IVs
with vanishing pleiotropic effects with o tending to zero at an appropriate rate (see Lemma 5
and Theorem S3 for its precise characterization), and V5 represents the set of invalid IVs with
non-vanishing pleiotropic effects. We note that it is not necessary to restrict all Sx,’s to have
the same magnitude, and our results presented in this section can be extended to cases where the
standardized IV strength lies in a neighborhood of 8y/0x;, in the sense that % € [U—BTOJ +4 x 0'870]]
with § tending to zero.

To further simplify our theoretical derivation, we consider a%,j = % for all j € S). Next, for any
subset V C Sy, we further define the following quantities:

B VNV

Vony
pl(V)—T> _M

Vsny

p3(V) = YR

Lastly, we denote A, = (In(sy) V kn) - /s2/n.

In what follows, we will argue that to satisfy Assumption 3, our invalid IV screening proce-
dure does not need to have a perfect screening property. In other words, our estimator remains
asymptotically unbiased even if our IV screening procedure does not select Vi with probability

approaching one. As shall be made clear in Lemma 4 and Lemma 5, our method avoids the need
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for perfect IV screening by showing that the selected IV set V can include both invalid IVs from
V5 and a vanishing portion of invalid IVs from V3 in the selected set V.

We impose the following conditions:

Condition 8 (The order of the number of valid IVs) The number of valid 1Vs vy is of the
same order as sy. For the number of invalid IVs, there exists a positive constant ¢y € (0,1) such

that (va/v1 Vvs/vy) < ey.

The above condition requires that the majority of the IVs included in MR are valid IVs. The next
condition is needed so that our optimization problem does not suffer from potential over-fitting

issues in high-dimensional settings:
Condition 9 (High-dimensional BIC) &, > In(s)).

Next, for any given € > 0, define a collection of sets

vbias(e) ZV(E) U vBIC

1
:{v‘v C Sps(V) > S}U{v’v C S,V =< ch .vl}.

nsy -rs

Vyias(e) is a union of two types of sets that will be screened out by our invalid IV screening

procedure. The first set V(g) consists of all possible sets with a non-vanishing proportion of IVs in

Vs, defined by the condition p3(V) > \/%m. Consequently, if our selected set % belongs to V(e),
the resulting causal effect estimator is biased. The second set Vg1 comprises all sets containing a
total number of IVs smaller than v1. As our IV screening procedure adopts lg penalty with BIC to
screen out invalid IVs, our selected set V tends to select an IV set with cardinality larger than v;.

Therefore, Y does not belong to Vgic as well. The following lemma provides rigorous statement

about our selected IV set ]7:

Lemma 4 For any given € > 0, if r3 is sufficiently large in the sense that A,/(rse) = o(1) and

|0(V)| is bounded by a constant for all V € Sy, then under Condition 1, 2, 8 and 9, the selected IV

set V using our procedure satisfies P(f) € Vyias(e)) — 0.

Next, we demonstrate that when 79 tends to zero at an appropriate rate and Sy are sufficiently
large, for the set V that does not fall into Vy;as(€), the bias term described in Assumption 3 is

asymptotically negligible:
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Lemma 5 We choose ay < Sy - k)y = NSy - 5(2) to stabilize the variance (other choices for ay can

T3

Bgs-w/nsk

also be adopted). For any given € > 0, whenever ro < \/7% and = o(1), under Condition

1 and 2, we have R
ax 2 jev T B

S Yy B — 0 [ = Op(e)-

-0
J,RB X rB

for any V & Viyias(e).

In Lemma 5, € can tend to zero at different rates, each affecting the conditions on ro, r3, and
Bo differently. To cast some insights into this result, we consider a simple example. For a positive

constant 4, we let

1
€= = 0(1)7 Knp = 1n1+6(8)\) > 111(8)\), ry = ln1+35(3)\) . \/g
n

~ In’(sy)

If ro and By satisfy

1 In'+49(s,)

VN > )
In°(sy) - \/75x Po n

ro <

the conditions of Lemma 5 are met. Here, the above requirement on the magnitude of 8y is rather
mild, as the selected IV strength in S) typically has an order greater than \/logw, since the
cut-off value X is often of the order y/logp. In practice, since relevant IVs often constitute only a
small fraction of all candidate IVs, sy should be a term of smaller order compared to p. Therefore,
the condition By > 1/In'T°(s,)/n that we impose here is rather mild.

With these two lemmas, we are ready to show that the set V selected by our proposed invalid

screening procedure induces negligible bias:
Theorem S3 For a vanishing number € > 0, we assume that

(i) rs is sufficiently large in the sense that Ay /(rse) = o(1), which ensures our invalid screening

procedure to effectively screen out IVs from Vs.

(ii) ro is a vanishing number in the sense that ro < \/T%, which ensures IVs from Vo to have

vanishing pleiotrophic effects.

(11i) Bo is sufficiently large in the sense that %(Sk)a%g — 0.
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If \é\(V)\ s bounded by a constant for all V € Sy, under Condition 1, 2, 8 and 9, choosing a) =<

Sy - Ky = NSy - Bg to stabilize the variance, we can prove that

a Zjev Ty BXJ -

VXA Z]EV /BX]RB -

= o0p(1).

]RB

We note that the third condition in the above theorem is slightly stronger than what was
assumed in Lemma 6, as we applied a union bound, needed to account for uniformity across all

possible subsets of Sy. The conditions we impose here are sufficient but by no means necessary.

S.6.2 Proof of Theorem S3

For any given € > 0, we have

ax Zjef/ 75 BX; _ Z ax Z]GV R /BXJ ® Y=V
; 22~ o — a
m E]EV BXJaRB O-XJ,RB VGVblas W ZJEV BX] RB 7 RB

a) Z]EV L ﬂX] RB 5
- Z —— 1V =V)
v¢vbias SA KI ZJEV BX

J,RB ]RB

For any €y > 0, the first term in the right hand side can be bounded using the following

inequality:

2 jev T BX]RB a ~ ~
P(| Z 2 AV =V)| > €0) < P(Upev,. (V= V}) = P(V € Vyias(e))

VGVblas SR Z]EV BX

]RB ]RB

By using the result in Lemma 4 and letting g — 0, we are able to show

ax ZJGV Tj- BX_] BB 35
Z 1V =V) = 0y(1).
Vevblas 8)\ K; Z]ev BX

J,RB ]RB

Thus it suffices to show that the second term on the right-hand side satisfies

ax 2 ey BX] R 5
Z 1V =V) = 0,(1).
V¢vb1as SA K/ ZJGV IBX

J,RB ]RB
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In Lemma 5, we show that under the event A(V, ), we have

| a)\ . Z]EV ,rj ’ 'BvaRB ‘ < 95
. 22 ~2
VENTRA S ey 5Xj,RB T OX,m

for any given V ¢ Vyias(e).
Under the event ()¢, (o) A(V, ), we can show that this holds uniformly for all V ¢ Vpias(e).

Thus we have

AN ng —~
Z ax . Zjel; J /]\;B 1V =V) < 9.
Vé&Vyias(e) m ZjGV IBXj,RB B UXj

JRB

We also notice that

]P’( N A(V,e))zl—[?( U AC(V,s))zl— 3 ]P’(AC(V,s))

ngbias (5) V¢vbias (5) ngblas(a)

Here A€(V, ) is the complement of the event A(V, ¢).

To prove P( Mev,...o) AV, a)) — 1, we only need to show

¢ (sa+1)-In(sy) c
v¢\§s(s)P<A (V7€)> <e At A V¢\r2?i(€)P<A (ng)) 0.

*6‘52‘38 .
In Lemma 5, we have P(A(V,¢)) > 1-2-e~ 167088 _g.ememin{ggn®vg, g nvSf} o ra(Mites (g 161
76.52.5(2) v
thus P(AC(V,€)) < 2-e 16" 4 4. e—emin{ygn®vB, g nvBl} 4 9. oraMrBtes (g 1858 I addition,

1261 vy for any V ¢ Vy;,5(€). Under Condition 8, we have v < s, uniformly hold for

any V ¢ Vyias(e).

With these results, we can prove e(sx+1)-n(sx) maxygy, . (c) IP’(.AC (v, s)) — 0 if we have %(S” % —
0

we have v >

0 and 7 < \/%

When ¢ is a vanishing number, we can show

- S
> 2. 2361’2 LR (V=) = 0,(1).
V&Vhias(€) S A ZJ'GV IBXj,RB o JXj,RB
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Thus,

ax Zje\7 7 BX; — 0,(1)
e = ~y T TP\
Sx A ZjEV BXj,RB B UXj,RB

Therefore, although our selection procedure does not have perfect screening properties, the set

that we select still has negligible bias.

S.6.3 Proof of Lemma 4

For any V C Sy, we denote a collection of sparse vectors
Ry — {a ERSNXL. g =0, for j eV, ap £0, for k e VC}
and a function

h(V,6) = min >~ T(0,7: By, 0%, Bx; )
Vjesy
2. a 2 2 ~2
(BYJ —0- BXj,RB) —6°- O-Xj’RB

:Z .

o
% Y;

For any given ¢ > 0, we define the set Vypi.s(e) = {V|V C Sy, ps(V) > \/%m} u{Vy C

Su|V| =v < HT‘” -v1}. Now we want to analyze P(lj € Vpias(€)) by utilizing the following
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inequality:
3 ) < . . _ < o .
P(V € Vyias(e)) < P(UGNIE,IBSSA [\V|=v,11}él\rilbias( )renelﬁg h(V,0) — Ky, - v] rglelllg h(V1,0) — Ky, vl)

< VEVU . )P(Iglelﬂrgh(v, 0) — on - [V] < 1in h(V1,0) = 1)

< Z 5* \VI max © (mlnh(V 0) — kp v < h(V1,6p) — Ky, - v1>

V,VEVypias 0eR
< v oy < _ .
< ;3,\ \V|=v,{/n€8€iias() (rglemh(v 0) — k- v < h(V1,00) — Kk, 111)
S Veﬁ?’i(s) 6(3>\+1)'ln(3A) . (lgéln h(V 0) — K * ’V’ < h(V1, 00) — R * fUl>
— (s t1)dn(sy) | _ _
e P(lggﬂrg h(V*,0) — Ky, - 0" < h(V1,00) — K v1>
(54)
where V* = argmax e(sx+1)4n(s1) -]P’(minh(V,H) — ki - V] < R(OV1, 00) — o - v1> and v* = |V*.
VEVpias(e) SIS
As we show that
el F1)in(sy) -]P’(mln h(V*,0) — kp - v* < h(V1,0p) — Ky, - v1> — 0, (S5)
(SN

then IP’O/) € Vpias(€)) — 0 holds. Here, we also note that the first equation in Eq (S4) follows from
the definition of the optimization problem defined in Equation 2 in the manuscript, the second to
the fifth inequalities in Eq (S4) hold following r@rgg h(V1,0) < h(V1,6p), () < s% and some basic
calculations.

To prove formula (S5), we need to analyze the asymptotic properties of h(Vy,6p), g}giﬁl h(V*,0)
and K,

We start with h(V1,60y) and decompose it below following our notation defined in Section S.5.1

By — O - )2 (B\X _5X-)2—32,
h(Vi,60) = ) By, g bx;) A P X, ne
JEVL O-Yj jew O'Yj
— 20 - Z (By; — 6o - BX;Q(BXLRB - Bx;)
JjeWV1 Y;
; uj — 0% viu
Sy gy ey o
jeVs Y jev: Y; fom Y,
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Next, we study the asymptotic property of Ieniﬂlg h(V*,0). We denote 5(12*) = arg Igniﬂrg} h(V*,0)
€ €

and decompose h(V*, §(V*)) in a similar way as h(Vy,0p), following our notation in Section S.5.1.

— 2 By  —Bx)2—52
h(v*’é\(v*)) _ Z (ﬁY 0( g ) BX]) + G(V*)2 Z (/BX],RB B);]) O-XJ’RB
jevr %y, Ia% Ty;

~

i 2§(V*) Z (0(V*) - Bx; —bo - 5);2_ rj) - (Bx;m — Bx;)
jev+ Yj

oy 3 BB~ 1) (B = Ox)

2
jevr Y;
(0 — oV . ui — 0%,
_ Z [ BX + T + V] ( ) BX ) + G(V*)2 Z J 2X],RB
* UY ¥ * UY
JjEV JjEV J
R 0V*) - Bx. — 6 - Bx. — 1) - ws R ps
vary Yo OV =00 21 5 gy o
: oy, gy .
jEV* Y; jev+ Y
(60 - Bx, + 71— O(V*) - Bx,)? V2 (00 - Bx, + 15— O(V*) - Bx,) - v;
= Z 72 Z 75 +2 Z : o2 .
jevr Y jEV* Ty; jev* Y;
u?2 — 52 (é\ V*) B — 6y ) . 0
D7y 7%\ 2 J Xj,rB * 0" PX; Uj ~ % Vil
+6(V7) ZTJ+26(V)Z -y —29(V)27.
JEV* Y JEV* Y; JEV* Y

With these decompositions, the Equation (2) can be rewritten as

]P’(ggﬁlh(v 0) — kp - v* < h(V1,6p) — Kk, - 1)1>

0 +r; =0V v? b0 Bx, +1j —O(V*) - Bx.) v
:P(Z(O 5X 32 ( )ﬁX) Yk (01 —0*) < — 7;_22(0 BX] J 2( )BX]) J
jEV* ; iev- % jevs Y
2 2 ~2 2 >
- us — oy R 0y  — 0% ~ OV*) - Bx. — b - Bx, — 1) - uj
) j X, ) X, X, % ( ( X 0 X j j
SOV YD T (V) Y S (V) B
jevx Yj jev= Y; jev= Y;
viu 2 U? g( 8%( g( Vil
* 2 RB 2 j,RB RB
+2000) S TE N L1 Oy Y e _ag, Y D)
jev: “Yi o ey Y jews Y; eV Y; jevi Y
By some calculations, we can see that
(%
o~ % 0'2
Z(90'5Xj+7“j—9(v)'5xj)2>minz(90'5Xj+7y 0 Bx;) _ZTJQ_ jeve 7Y
: o2 ~ eR o2 o2 8%
JEV™ Y jevr Yi jevs "Y; > =t
jev+ 7Y
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with probability 1.

Let
'I'BX
1 r? (2, JU% ")
L 15 )
- * 2 2 ’
v oy UY] Z B
JEV*

When V* € Vyias(e) such that [V*| = v* > £ .y and V* # Vi, under Condition 4, there

exists a Cy > 0 such that

P(renelﬂrgh(v ,0) — Ky - 0" < h(V1,00) — nn~v1)

TBX
r2 (ZV JU% ])2
JeEV* J
=4 - A =AW,
JEV* Y; Z %
Yj

1%

2_03’1 Yy j

JjeVv*

2 2 2
Uj = 0%,

(0o - Bx, + 14 — (V) - Bx,)?
= P< Z JU%. — e (V) S - Z : o : o2
JEV* J JEV* J JEV* J
S k2 X~ Xm0 x; =00 Bx; 1) v sl (O(V*) - Bx, — 00 Bx, —15) "y
+6(v*) Z - 2 Z* oy —20(V*) Z )
JjeEV J 2% J JEV J
R Uit VJZ—J%_ u?fag(v 0% —o% Vil
w20V Y BE Y L By L e g2 N K Kom 9, $ %)
jev- %% jev, 7Y jevm 7Y jev1 UYJ jEV1 UYj
SP<Z(eo.ﬁxj—i—rj;ew)ﬂxj) — Kn - (V= vy <|Z |Z ]RB
Na% Ty; ]ev* Na%
I “fr 3L 93 P o)) +2|a<v*> >
jeV* Ty; jev* Ty; jevs Y
ZUNEDSRCEE RN i S AR o “‘BH%\Z “‘Brweowz )
Jev* 7 JEVL JEVY JEVL JEVY j
SP(Z(GO ﬁX +7“Jg9< ) BX) — k- v 7@)\ <|Z }+CO|Z JRB
JEV* UY" JjeV* ]EV*
- 0 0
+Co‘ Z X rB ]RB _’_200‘ Z O.;) /BX CUj 2‘ Z 020 /BX ) V]|
jev* j JEV* Ya jev* Y
_ o2
_|_200 |Z |+90|Z JRB|+90|Z Xj,re JRB’+290|ZVJU])
JeEV* J' JEVT JEVL JjeEVT Y;j JjeEVT YJ’
For simplicity, we can assume Cy = 1 and 0y = 1. We also know that
"'j'BXj 2
(0o - Bx; +1j5 — oV - Bx,)? r3 (jezv* %, ) .
Z 3 (v* — 1) >ZT_7B2_K".(U —v1).
i 0y, O X;
JEV J JEV Z )
jeyr Y
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If we have

K - (V* — 1) K - (V* — 1)
riBx. = *A * - O (87)
) (Z — iy2 v (V )
> Ty gevr Y
JEV* U‘QYJ‘ ii‘
jev* 7Y,

uniformly holds, there should be a ¢ such that

TiBx;\2 T5-Bx; \2
7“2 ( a%v ) 7,.2 ( af,, )
Zi, JEV J B .(*7 )> '(Zijij€v i )
o2 A%, fintlvm o) =¢ o2 %,
jev " Yi > jev i P
jev Y jev Y

We prove the Equation (S7) in Lemma 6.
With this result, the above probability is bounded by

UX c r? ;; i i-0%, c j % i
(’Z RB’ T ) (I Tt 2 (X )

2
X, (v X,
JEV* jev Y; e jeEWV: Y jev Y S =2

Jma_ Xiore ¢ r] jev. Y TXjm ~ X0 c s jev %
(’Z |ZE(Z%_7@))+P<\ZT|ZE(Z%—7;

jevr jev 7Y > U2YJ JEW: i jev 7Y > U;;J
jey i Jjev i
ri-Bx.; ri-Bx
c r? (%%)2 V2—0'12/ C r? (22%)2
y J i 1 J
(D e Ay s M= LT B B s S A Ty
104~ o2 X, , o3 10 <= o3, Bx
JEV* jev Y; Z 02] JEVA J jey L Z 027
jev Vi jev i
T Bx ri-Bx
. . r2 ( ZV 70-%/ J )2 ™ . T2 (ZV 70-3/‘ J )2
7% J Jje J j U j je i
+P(2] 30 B 2 (0 - ) P B e g )
eV Yj jev " Yi P jevs 7Y jev " Yi =
jev Vi jev Vi
—00-Bx, — 1) v 1 (0 - Bx, +7; — (V") - Bx,)? .
+2(2] Z - EX103 — o (7 =) )
% f] % [

(V") Bx, — b0 Bx, — 1)) b0 Bx, +15 = 6(v") - Bx,)* -
]P’(Q‘Z(( )BJ OBJ ) ‘>i(z(06 + ( )6 )7}{”.(@ fyl))>,

o2 ~ 10

(o2
jev+ Y; jev* Y;

Also we have

3 OO Bt B =) gy | OO B B w5
? - 2
jeve i jev 7; jev+ 7Y
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0.2 2

2
o
jev* Y jev* Yj jevs " Y;

‘Z@(V*)'ﬁxj90'5Xj7"j)"/j‘ - Z(a(v*)'ﬁXj%'ﬁXjTj)Z 5 V2

That means there exists a ¢’ > 0 such that the last two terms are further bounded by

p(| Y, PR B m e s oot BUDBN e )

2 2
o o
a% Y jev* Y
(B0-Bx, +r;—0(V*)-Bx,)?
J — J — Ky - (v* . Ul))
Yj )
(90'ﬁxj +Tj—§(V*)'BXj)2

> =
JEV* Yj

( Z Tj‘ij )2

jev 7Y
)

2
> o

2
jev Y;

2
jev= Y; Fa% %Y;

*N . _ . — ) - Us . ) TA_A *) | A2
P(‘Z Cl% BXJ- to ﬁXj ]) ]‘Zi(z (6o 6Xg+ J o(V*) 5)9) —Hn-(v*—m)))

2
us re Y;
5 7 V% J

SP(Z 5= 02 7 )
jev Y ev Y S 2
(og
jev y;

*2 A2y %
—c’-min{%, v*-A2(V*), v*-A(V*)}

Using Lemma 1, we can show that these ten probabilities are bounded by 2-e 1

To prove e(sxt1)in(sx) -P(I;aiﬂg h(V*,0) — Ky - v* < h(V1,00) — K - vl) — 0 uniformly for any
€

V* € Vpias(€) such that |V*| = v* > H% -v1 and V* # V;, we only need to show

*2 *
—c’-min{v*~A(V*), v*A2(Vr), AT

2e(sat1)In(sy) | o Y1 } = 0.

The above formula can be converted into

2€(sx+1)'ln(sx) . e—c’~min{v*-A(V*)} = 0. (SS)

We prove the Equation (S8) in Lemma 6.
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When v* < 3L - 91, we decompose h(V*¥, 6(V*)) in a different way,

~ (5Y — (V) - Bx,)? - 9 ox,
BV, 0 = 3 S (V) Y g
jevr Y; jevs 7Y
. (BYJ - é\(V*) ' BX]',RB)Z é\ P 2 a-%(j,ms - Og{j,ma é\ P* 2 U-%(j,RB
=2 7 SO D S A ), g
jev* Y; % Y; jevs Y
Under Condition 4, there exists a Cy > 0 such that
i * _ Lot < _ .
P(Ignel]gh(v 0) — K - 0" <h(Vy,00) — K vl)
-0V 2 ~ 0% —o%. ~ 2
< P( Z (BY ( 2) BXJRB) Ty (’Ul . U*) < e(v*)g Z X re 5 X re +9(V*)2 XQJ,RB
" Oy; . Oy; v Y
JjeEV J jeV J JEV J
2 _ 2 ~2 2
f] 2 U 7 0X;me 2 X~ TXjm viu;
JEV: JEV YJ JEV, YJ JEV: YJ
5 -0V RB 2 R 2 RB
SP(Z(Y (02) BX] ) + Ky - (v —0%) <C0’Z o Xjm |+Co v*
jeEV* Y; jGV*
2
— BB BB RB viu
D PR AR ple it & |+eo\2 S |+200\Z )
JEVT JEVL ]6V1 JEVT 1/3
sw<nn~<m—v*> R )
]GV* JEV:
_ 2
+9O|Z N | gg 30 Due T +290|Z””“J)
€V jeV1 jew 7Y
For simplicity, we can assume Cy =1 and 6y = 1.
Using v* < 1+Cl - v1, we know that there must be a ¢ > 0 such that
mn'(vl—v*)—C’g-v* >c- Ky V1.
then the above probability is bounded by
UX RB & RB - A%('RB c
(’Z B R {25 K - v1)+P<\Z Ham __ Xjm ‘Zg%n-m)
JEVL Y JEV* Y;
- 2 c Vit c vy — 012/. c
+]P>(\Z Xy ”B\zg Ko - v1>+P(2\Z ol v1>+]P>(\ > = vl)
JjEVL JjEVL Yj JEVA Yj
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Using Lemma 1, we know that there exists a ¢ > 0 such that the these five terms are bounded

by 9. e—c’-min {n%vl, F"%:%’ Fon U1 } )
To prove e+ n(sx). P(roplﬂlg h(V*,0) — Ky - v* < h(V1,6p) — v1> — 0, we only need to show
€

2€(s>\+1)-ln(s>\) . efc’-nn-vl 0.

This can be easily verified by Condition 8 and 9. So we can conclude that e(sx+1)n(sx) .

(r@mﬂrg h(V*,0) — kp, - v* < h(V1,00) — Kn - v1> — 0 uniformly for V* € Vy;.s(e) such that v* <
€

1+cq

3 * V1.

Therefore, we conclude that e(sxT1n(sx) . p (roplﬂlg h(V*,0) — Ky - v* < h(V1,00) — Ky, - Ul> -0
€

uniformly for all V* € Vyi.s(e).

S.6.4 Proof of Lemma 5

To prove this lemma, we first define the event:

RB_ 2RB 1 /BX U? UXRB
A, = {30 D~ om <3 AR = Z
V

o2
jev jev Y jev Ty;

N \zﬁ“f» SNy e

jev Y jevy Ty; jev UY e 7

H/—/»@o

We want to show for any € > 0 and any given V ¢ Vy;.5(g), under event A(V,¢)

ax ) Zjev Ty ﬁXj,RB <9.c
/Sy - Ry 22 ~2
SXTRA D ey BXJ-’RB T OX;s
and P(A(V,¢)) — 1.
To do this, we make the following decomposition,
ax Zjev N 5ija a dev i Bx; + Zjev Ty Uy

/ o / 2 2

and notice that under A(V, ) we have
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ax Ejev Ty //B\X]',RB «_ M dojev i Bx; ey iUy
\/WZJEV Bg(j,ma B ag(j,RB VSR % ’ Zjev ﬁg{a
_ _4a E:jev7b"ﬂxb_+ d-ay 2jev’i U
VEnTRA YevBY,  VER R Yjev By,
< 4-ay 2jevri-Bx;
VTR Dev B,

For the first term on the right-hand side

4. ay Zjevrj '5Xj

VX REX Zjev 5_%(]

, we can rewrite it as

2jev i Bx, / (vak + v3) - 7350
4-y/nsy-B2- =L L T 4 [ nsy - B2 2 3
Y By, O vl g +vh 5 + viB]

bk + v} T3

—4. P B L B
m (v] + vy + %) Bo

.

=4+ \Jnsy- B3 (pa(V)- E+p(V) g

=4 /sy (p2(V) - k+ps(V)) - 7s.

where k = 2. For any given £ > 0, we have p3(V) < \/%.rg for all V ¢ Vyias(e). If we have

3

_£&

ro < ey !

then we know

Zjev rj - Bx;

5 =4-y/nsy - (pa(V) - k+p3(V)) - r3 < 8e.
> jev Bx,

4-/nsy- B2

holds for any given V ¢ Vy;as(e).

Now we show that under A(V,¢),

ax Ejev Tj* BX;ne 9.c
NN 22 ~2
SxtRa ZJEV IBXj,RB B UXj,RB
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It suffices to show that P(A(V,e)) — 1. We have

2
P(A(V,e)) > 1P < ],RB J,RB > ) ( J,RB N ])
A, 2 1| P P >_4ZJY pIRECEIRES pl-
JEV jEV JEV jey Y
2 2
Bx;uj Bx, 4a iU
P12~ 127222) - A!Z”PZ
- 4 ol NGEDN o
jev j jev Y jev " Y; jev Y
Under Condition 1, we have
5%
(Cjev —ob)? 52
_ 2 2 —cmin{ ————4 — 1.5~ v%}
e R e
—4 o -
Jjey JjEV Yj
Bij
Ejev —27) 2
2 —cmin{ —————4— L.y~ Td)
(\ . i ”B\ > 1 )2(1) <2.¢ T T gL gmemin{ig v fmsi)
=1 <
jev YJ jev Y
5%
—e(Zjev —g)?
Y
8% 8%
2 16-3 J _LZ —J
U4 . JEV 2 16 JEV 52 P 2
Do R o o B e R
JjeY Y _]EV
5% .
—ce?(Tjev UTJ)Q
Yi  saka
53 165 e = S Y —ec2.83
2.5EV T3 < v
( 401,\ ‘ Z Tju] ‘ Z ;(]) <9.¢ J U%j —92.¢ 16n ZJGVT 'rm)\ﬁo —9. epQ(V)r2+p3(V)72 165y .
S\ K) B o B
NG . Y
—ce [32 v
Thus we have P(A(V,E)) >1-2. e—ﬁn-fu-ﬂg 4. e—omin{ n? v,30,4 nvBE} _ 9. epQ(V)T2+p3(V)T2 165
. o 14c .
Since |V| = v > =525y and p3(V) < \/WTS for V ¢ Vyias(e), if we have k < W then
2 2 2
p2(V)ry +ps(V)rs . 2e 73
2. 33 = \/nsyry e2[32
2 13
TN 5250
2 r3

N

f \/%662 — 0 and 754 — 0, we then can show P(A(V,¢)) — 1.
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Thus we have
ax Zjev T BX;ze

VI TEA D ey Bgfj,mg - agcj

= Op(e)a

,RB

for any given V ¢ Vy:.5(e).

S.6.5 Additional Lemmas

Lemma 6 Under Condition 2 and 8, if An/(rse) = o(1), we have

26(5>\+1)-ln(3A) . efc’-min{v-A(V)} 0 and ’{TLU'.(Z(_Vl)}l) =0

uniformly hold for all V € Vy;as(e) and v = V] > vy,

S.6.5.1 Proof of Lemma 6

For a given set V € Vyias(€), we let v = Vi NV|, vh = |Va N V] and v = [V3 N V|. Then

(% oy

1

2 : _ 2 2
B 1 T jev 7Y k4w 9 (vyk - 380 + vh - 350)
A(V>* 7 7 /( 2 52 ) = 7 7 ronrg N 7 R2 1 32 R2 / /
vy Uy T Oy, PR v + Uyt Uy v1Bg vy +usfy v vy g
a
JEV ' Y;

vhk? + v} o (Vhk 4+ v)? - nrd
,+,+,-nr3—(,+,+,)2.

Using the definition of p1(V), p2(V) and p3(V), we have

TﬂX
s (X 2 t)?

1 r = Y.

AV) = O 4 - ) = (WK + ps(V) - B — (p2(V)k + p3(V))? - mrd.
V] + vy + V5 o Zﬂé
jev %Y;

where k = %
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‘We have

p2V)K? +p3(V) = (02(V)k + p3(V))?
= (p2(V) = p2 (V)K= 2p2(VIp3(V) - k + p3(V) — p3(V)*
= p2V)(p1(V) + ps(V))E* = 2p2(V)ps(V) - k + p3(V) (p1 (V) + p2(V))
=p2(V)p3(V) -k = 202 (V)ps(V) - k + p2(V)ps (V) + p1 V)p3 (V) + p2(V)pr (V) - K

=poWps(V) - (k — 1)* + p1(V)ps(V) + p2(V)p1 (V) - K

Note that we have

v} c1 U1 2¢1
V) < 3 — ‘
ps(V) v] + vh + g 714501 vy 1+
Let ¢ = 12+C(1:1. If ps(V) > \/775;-7“3’ we have 1 — ¢} < p1(V) +p2(V) <1 - \/%4’3- Then we

consider two different situations:

o no(V) > 1_20,1: by choosing k < %, we have

P2V +250) = 2V + 2oV = paVIpa() - (=17 > B =
o po(V) < 521 we have py (V) > 53,
(P2V)K? +p3(V)) = (p2(V)k +p3(V))? = pr(V)ps(V) > . 20/1 ' \/% s
So we have when p3(V) > \/%-rs’
20 sV~ (V) 2> C AL

Now we consider
(sx+1)-In(sy) _ sl In(sy) < sy +1 8y/sxmax{ln(sy), kn}

v-A(V) v (WK +p3s(V)) = (2(V)k +ps(V)?) -mry = S up (L=cj)e-ynrg
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K+ (U —v1) < Kn < 8,/sx max{ln(sy), kn}

v-AV) (P22 +p3s(V)) = (p2(V)k +ps(V))?) - = (1= ¢)) -~ /nrg

Using Condition 8 we have - 2l — O(1). Then if we further have
2"

we then can show

K - (v — 1)
v-AV)

2€(s>\+1)-ln(s>\) . e—c’~min{v-A(V)

} 50 and — 0.

S.6.6 Sufficient conditions for the Boundness condition

Condition 10 (Boundedness) For any V € Sy, |0(V)| is uniformly bounded away from oo with

probability goes to 1.

To see this, we can decompose 5()/) as follows:

(905)(]- +r;)Bx X; 905}( +75)u wjv;
Syt o2y P ey T e
I J J J
H(V) - 2 2 PS) )
Px Xig9 Ui~ UX]',RB Xjme ’Xjre
Z]ev + Z]EV U%/ + Z]EV o2 - Zjev 2

g
Y; Yj

/BX BX uj

o D 0 S 1) 5 B

BQ 2_U§'RB a%( _Ug(‘RB
ZJEV + 2 ZJGV o—gj >+ 2jev ?JJ ~ Ljev TJ
Define the event B(V)
0% 2 2
- 1 BX. U 1 BX.
By = {30 T T Lo B b it T L5 O
jev jev Y jev jev Y
Bx;uj %, UjV; §< Bx;vj /Bg('
M2 25 < 1 22 NS o l< M <
jeV ]- jevy Y; JEV Y; JeEV YJ Jjev j jev YJ
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Under B(V), we have

52 Bx;uj
R (6o +max|ﬁ )2 ey + E]EV G%_ + (6o +max\ﬁ |)Z]6V = 4 ZJ@; 5
o(V) = .
A%, Bx u; ui-o% 5% m —Ui.
Tjev oz +2 Zjev St i 3 - ey
J J J
. BX ﬁ%( BX
(0o +§%§X|ﬂ:§j DZ)GV + 1 Yjev oz + (% +max‘ﬁx D5 Yjev 7 + 1 Yjev o7
S ]
1 X
1 2jev T
9
— - (0 + 2.
=5 ( 0+| )

Notice that

P(B( > 1— <‘ Z ]RB _
%
<2|ZIBX Uj‘
JjEV Y

]RB}

DI

]EV

1 B%, ui—ok 1 %
-

g g

jev Y jev Yj jev Y
) JOOETEES Sl AR ol LI
jev Y jeV Yg jev Y;
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Under Condition 1, we have

5% . )
Ejev =25 52
_ 2 2 —cmin{ ————4 — L5~ i)
v ; ) eV ;2 .
(‘2 : ]RB JRB‘ > % )2(1) <2.¢ 16-v 4 7Y 9. efc-mm{%-nz-vﬁé,i-n-vﬂg}
o
JEV Y JEV Y
5%
O 52
2 _ ind g3 1 _J
U ) c-min{ N 74'2'6\; 52}
(13 um 5 Loy Py ST TR it o)
jev YJ 4 jev Ty;
8% .
—e(Zjev —2b)
Yj
8% 8%
2 64-3 J _LZ —J
X Wi X, Jevpf 64 JEV 02v — < n. . 52 ) €32
(2’52 ]‘ E: 2J>§2-6 i =2-e i =2.¢ 2jev Xj = 92. e samBo
o
jev j jev Y
5%
—e(Sjev —z2)?
Yj
%, 6%
2 16-3 1 _L.z, 2
Xl/ X JEV 2 16 4~jEV 2 RIS o 2 e g2
(’ZB J‘ Z ])SQ-G i o=2.¢ Vi =92.¢ 16”236"5)(1:2-6 1670 B0
jev Y; jev %y;
5%
2 _c.min{ii LE 73‘}
1) ,B ) 16- 74 Laj€EV 52 ol 1
P(’E e = i 2 )2(J> <2-e ’ W = 9. gemin{yg By, vt}
o o
jev Y jev Y

Thus we have P(B(V)) >1—2- e~ 16" VB — 9. emsan VBl 6. gmemin{ggm®vBg.pnus)

Under the event (),cs, B(V), we can show that

(V)<= (6+ y ) 12

[\D\@

holds uniformly for all subset ¥V C Sy. We also notice that

P( N B(V)) :1—]1»( U BC(V)> >1- Y P(BC(V)>.

VCSi VCSa VCS\

Here B¢(V) is the complement of the event B()).

0 prove — 1, we only need to show
T P VQSAB 1% 1 d h

ng IP’(BC (V)) < DI o IP’(BC (V)) 0.
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We have shown P(B(V)) > 1—-2- e~ 16 VB — 9. g5 0B _ 6. gemin{ign? vl B thys
P(BE(V)) < 2. ¢~ m 088 1 2. il 4 . mominl ot ust b}
With these results, we can prove e(sxt1)in(sx) maxycs, IP’(BC(V)) — 0 if we have %ﬁ(ﬁ’” — 0.
- 0

Thus we have

| ©

oY) < -(90+|%)+2.

holds uniformly for all subset V C &, with probability approaching one.

If there exists a constant C' > 0 such that ]%\ < C, we then can verify that

~

(V) <

| ©

(6o + C) + 2.

for all subset V C Sy with probability going to one.

S.7  Connections and differences with [4]

A summary of the proposed method in [4]. The authors consider a setup with an initial GWAS
scan and a replication study. In the initial scan, they let the { X7, ..., Xx} be the estimated effect

size for K SNPs. They also assume these effect sizes follow normal distributions:
X~ N(Miaa%,i)'

This initial scan is used for selecting the strong SNPs. They ordered these effect size as X1y, ..., X
and denote the corresponding means and variances as fy(1), - - -, f4(x) and O‘% ()7 ,U% (K> and then

perform the following selection:

| X2 | X (1,1l

. >0 N1 = copit) = A
o) IL(2) (k)

Due to the selection step, the distribution of X(;) becomes truncated normal, and therefore, X,

is a biased estimator of p(;). To get an unbiased estimation, the authors leverage the replication

73



study, where Y; is the effect size of the i-th ranked SNP such that

Y~ N(M(i), U%,i)

For simplicity, we let Uf @ = a%i = criz. Obviously, Y; is an unbiased estimator of j(;). However

it often has a large variance. For this reason, the authors proposed a weighed version of estimator

which can effectively combine the data from both the initial scan and the replication study.

Based on this estimator [i(;), they then construct an unbiased estimator of j(;) and further use
the Rao-Blackwellization to obtain an unbiased estimator with the minimum variance

This estimator takes the form:

W) = oW ) — oW ) + oWl

—~ i,0—1
H(iy = H(i) — 0
V3 W) — oWl ) — oWl )+ e )
where Ws(ﬁ) = ‘!—f - (gs) — (—1)”%;”‘), % = 00, and % =& (1 — cerit) = A

Connections and differences with our approach. When customizing the proposed ap-

proach in [4] to our problem for SNP selection, we may perform the selection following:

X
1 X (1)l -
o1

_1(1 — CCTit) = A

Then, the corresponding unbiased estimator for (1) can then be given by

i g o )~ 6OVL) — (1) + oW
VR e (®) - ewi) - en(Y) + e(wy)
oo G - e(h)
VVE ey 41— anY)
g o O () = V) = G -Gy + )
PVE (R iy - )+ 1- (2 (@

o1

Although this estimator appears very similar to the one proposed in our manuscript, it requires
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summary statistics from a replication study (as Ws(ﬁ) depends on Y;). In other words, to provide
an unbiased estimator of f(q), [4] requires two GWAS: one initial GWAS for selection and another
replication study for unbiased estimator construction. Therefore, the key difference between [4] and
our approach is that our method can construct an unbiased estimator of (1) without a replication
study. In other words, the setting considered in [4] is aligned with the three-sample MR setting,
where SNP selection is performed on a third independent exposure GWAS sample. In constrast,
we focus on the two-sample MR, where SNP selection and parameter estimation are carried out in

the same exposure GWAS sample. From a different perspective, our approach is indeed connected

to [4] as a Rao-Blackwellization step is applied to improve the estimation efficiency.

S.8 Simulation settings and additional simulation results

S.8.1 Simulation settings

Note that the total effects of SNP j on exposure X and outcome Y can be written as:

Bx; =+ Bxudj; By, = 0Bx; + o5 + Byudy,

where 7;, ¢;, and «; is the true direct effect of SNP j on X, confounding factor U, and Y,
respectively (see Figure 1). Following [39], we simulate summary-level association statistics 3 X;

and Eyj directly. Specifically, we generate

where oy, = v/1/nx and ox; = V1/ny.

To save space and make the simulations representative of real GWAS data, we focus on gen-
eral simulation settings where both directional correlated pleiotropy and balanced uncorrelated
pleiotropy are considered simultaneously. Other specific simulation settings have also been briefly

considered. Specifically, we generate the underlying parameters from a mixture of distributions, a
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setup that has been widely used for modeling the effect sizes of complex traits in GWAS [7, 47, 55]:

Vi N(an-a%) N(O7Ug) N(0,0’g) 60 50
aj | ~m 8o +m2 | N(0.015,02) | + 73 [ N(0,07) | +7ma | N(0,07) [ 75 | & |

?; 5o N(0, 02) o o o

Valid IVs correlated pleiotropy uncorrelated pleiotropy  IVs fail the relevance assumption

(S9)

where Jy is a Dirac measure centered on zero (i.e., the point mass at 0), m; controls the proportion
of valid IVs (where 7; # 0 and both «; and ¢; are equal to zero), m controls the proportion of
invalid I'Vs due to correlated pleiotropy, 73 controls the proportion of invalid IVs due to uncorrelated
pleiotropy, m4 controls the proportion of SNPs that are only associated with Y, and 75 = 1—2?:1 j
controls the proportion of SNPs that have no association with both X and Y. Note that when
¢j # 0, the Instrument Strength Independent on Direct Effect (InSIDE) assumption is violated for
SNP j because the exposure effect is correlated with their pleiotropic effects on the come due to
mediation by common confounding factor U. InSIDE assumption is popular in MR literature and
requires that the exposure effects of individual SNPs are independent of their pleiotropic effects on
the outcome [10].

Following [39], we generate 200,000 independent SNPs to represent all underlying common
variants and set 02 = 05 =02 =1x107", Bxy = Byv = 0.3. We set nx = ny = 500,000 to reflect
the sample size of a typical GWAS in our real data analyses. We further set m + w9 + w3 = 0.02,
mo = 73, my = 0.01, and w5 = 0.97. We vary the proportion of invalid IVs, which is defined as
(m2 4+ m3) /(71 + ™2 + 73), to simulate different situations.

Our proposed CARE estimator is compared with widely used IVW method [8] and seven other
popular, recently proposed robust MR methods, including cML and ¢cML-DP [53], MR-Egger [2],
Weighted-Median [3], MR-mix [38], Weighted-Mode [22], MR-APSS [25], RAPS [56], contami-
nation mixture [ContMix; 9], and MR-Lasso [40]. For IVW, we use the random effects version,
which accounts for invalid IVs by allowing over-dispersion in the regression model. For CARE and
MR-APSS, we set the significance threshold at 5 x 107°. Following common practice, for other
benchmark methods, we set the cut-off value A at 5.45 (corresponding to the significance threshold

5 x 107®). In our numerical studies, we used 7 = 0.5 as the default value in the winner’s curse
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removal step. We simulate 500 Monte Carlo repetitions to evaluate empirical statistical power
(6 # 0) and 1,000 Monte Carlo repetitions to evaluate Type 1 error rates (6 = 0).

We report our simulation results with five measures: Type 1 error rates (proportions of mistaken
rejection under # = 0), power (proportions of p-values less than the significance threshold 0.05
under 6 # 0), absolute bias (the absolute difference between the estimated 6 and the true 6), mean
squared error (the average squared difference between the estimated 6 and the true ), and coverage

probability (average coverage probability of the 95% confidence interval).

S.8.2 Different proportions of invalid IVs, CARE without winner’s curse, and

running time

We conduct several additional simulations. We generate the parameters using the following distri-

bution:

s N(0,07) N(0, o3) N(0, o7) %0 do

a; | ~ ™ 9o +m2 | N(0.015,02) | + 73 N(O,ag) +my N(O,Ug) +75 | do |>

2
(]5j 50 N(O, O‘u) 50 50 50
Valid IVs correlated pleiotropy uncorrelated pleiotropy  IVs fail the relevance assumption
(S10)

We follow the main simulation setting and set m; + m + w3 = 0.02, 74 = 0.01, and 75 = 0.97.
We vary the proportion of invalid IVs, which is defined as (w2 + 73)/(7m1 + w2 + 73), to simulate
different situations. Figure S1 summarizes the result to compare the performance of the CARE
estimator and CARE estimator without winner’s curse bias correction under the setting with 50%
invalid IVs. Figures S2 and S3 summarize the results for the settings with 30% and 70% invalid
IVs. Figure S4 summarizes the runtime of the CARE estimator and several robust MR methods

for the setting with 50% invalid IVs.
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Figure S1: Type 1 error rates, power, absolute bias, mean squared error, and coverage of the CARE
estimator and CARE estimator without winner’s curse bias correction (CARE_no_correction) under
the setting with 50% invalid IVs. Power is the empirical power estimated by the proportion of p-
values less than the significance threshold 0.05. Coverage is the empirical coverage probability of
the 95% confidence interval.
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Figure S2: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the main setting with 30% invalid IVs. Power is the empirical
power estimated by the proportion of p-values less than the significance threshold 0.05. Coverage
is the empirical coverage probability of the 95% confidence interval.
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Figure S3: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the main setting with 70% invalid IVs. Power is the empirical
power estimated by the proportion of p-values less than the significance threshold 0.05. Coverage
is the empirical coverage probability of the 95% confidence interval.
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Figure S4: Runtime (in seconds) of the CARE estimator and several robust MR methods under the
main setting (12,000 simulations in total). The box limits represent the lower and upper quartiles,
the central line represents the median, and the whiskers represent all samples lying within 1.5 times
the interquartile range (IQR).
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S.8.3 Uniform distributed effects in correlated pleiotropy

Under the setting using uniform distributed effects in correlated pleiotropy, «; follows the uniform

distribution. We generate ;, a; using the following distribution:

v N(0, o2) N(0, o2) N(0, o2) do 9o

rrx

aj | ~m 5o +m2 | U(0.01,0.03) | + 73| N(0,02) | +74 [ N(0,02) | +75 | b |

2
;i 5o N(0, 02) 5o 8o 8o
Valid IVs correlated pleiotropy uncorrelated pleiotropy  IVs fail the relevance assumption
(S11)

We follow the main simulation setting and set m; + w9 + w3 = 0.02, m4 = 0.01, and 75 = 0.97.
We vary the proportion of invalid IVs, which is defined as (w2 + 73)/(m1 + m2 + 73), to simulate
different situations. Figures S5 to S7 summarize the results for the settings with 30%, 50%, and
70% invalid TVs.

S.8.4 Balanced horizontal pleiotropy with InSIDE assumption satisfied

Under the setting of balanced horizontal pleiotropy with the InSIDE assumption satisfied, we allow
the InSIDE assumption to be satisfied by setting ¢; = 0. We generate ~;, a; using the following

distribution:

2 2
vj N(0,02) N(0,02) o o
~ T + 73 + 7y + 75
2 2
o o N(0, ;) N(0,0;) 9o
Valid IVs uncorrelated pleiotropy  IVs fail the relevance assumption

We follow the main simulation setting and set 71 + w3 = 0.02, 74 = 0.01, and 75 = 0.97. We vary
the proportion of invalid IVs, which is defined as (73)/(m + 73), to simulate different situations.

Figures S8 to S10 summarize the results for the settings with 30%, 50%, and 70% invalid IVs.
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Figure S5: Power, absolute bias, mean squared error, and coverage of the CARE estimator and sev-
eral robust MR methods under the setting of uniformly distributed effects in correlated pleiotropy
with 30% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%
confidence interval.
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Figure S6: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the setting of uniform distributed effects in correlated pleiotropy
with 50% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%
confidence interval.
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Figure S7: Power, absolute bias, mean squared error, and coverage of the CARE estimator and sev-
eral robust MR methods under the setting of uniformly distributed effects in correlated pleiotropy
with 70% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%

confidence interval.
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Figure S8: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the setting of balanced horizontal pleiotropy with InSIDE as-
sumption satisfied with 30% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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Figure S9: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the setting of balanced horizontal pleiotropy with InSIDE as-
sumption satisfied with 50% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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Figure S10: Power, absolute bias, mean squared error, and coverage of the CARE estimator

and several robust MR methods under the setting of balanced horizontal pleiotropy with InSIDE
assumption satisfied with 70% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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S.8.5 Directional horizontal pleiotropy with InSIDE assumption violated

Under the setting of directional horizontal pleiotropy with InSIDE assumption violated, we generate

the underlying parameters using the following distribution:

Y5 N(0,03) N(0,07) do do
aj | ~m 5o + 72 [ U(0.01,0.03) | +74 | N(0,07) | +75 | do |
oy do N(0,07) do do

TV TV
Valid I'Vs correlated pleiotropy IVs fail the relevance assumption

We follow the main simulation setting and set m; + mo = 0.02, m4 = 0.01, and 75 = 0.97. We vary
the proportion of invalid IVs, which is defined as (m2)/(m1 + m2), to simulate different situations.

Figures S11 to S13 summarize the results for the settings with 30%, 50%, and 70% invalid IVs.
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Figure S11: Power, absolute bias, mean squared error, and coverage of the CARE estimator
and several robust MR methods under the setting of directional horizontal pleiotropy with InSIDE
assumption violated with 30% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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Figure S12: Power, absolute bias, mean squared error, and coverage of the CARE estimator
and several robust MR methods under the setting of directional horizontal pleiotropy with InSIDE
assumption violated with 50% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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Figure S13: Power, absolute bias, mean squared error, and coverage of the CARE estimator
and several robust MR methods under the setting of directional horizontal pleiotropy with InSIDE
assumption violated with 70% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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S.8.6 Sensitivity analysis using different values of 7

We conducted sensitivity analyses using different values of n (0.1, 0.3, 0.5, 0.7, 0.9) in our main

setting. We generate the underlying parameters using the following distribution:

")/j N(0,0’%) N(O,U%) N(O,U:%) 50 (50
aj | ~m 5o + 72 [ N(0.015,02) [ + 73 | N(0,07) | +74 | N(0,07) | +75| & |
P; 0o N(0,07) 90 do d0

TV TV
Valid IVs correlated pleiotropy uncorrelated pleiotropy  IVs fail the relevance assumption

We follow the main simulation setting and set m; + w9 + w3 = 0.02, m4 = 0.01, and 75 = 0.97.

Figures S14 summarize the results for the settings with 50% invalid IVs.
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Figure S14: Power, absolute bias, mean squared error, and coverage of the CARE estimator with
different n under the main setting. Power is the empirical power estimated by the proportion of
p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability of
the 95% confidence interval.

S.8.7 Consistency of using GBIC with different choices of x, as model selection

methods

We discuss the adjustment of BIC when sy tends to infinity with generalized BIC (GBIC) of the

following form:

A~ o~

GBIC(v) = —21((v), {?’j(v)}jef)) + ln - (sx—v), sx=|Sx|
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We tested two choices of k,: (i) k, = logn and (ii) k, = log(sy) - log(log(n)), both satisfying

Kn > log(sy). We generate the underlying parameters using the following distribution:

Yi N(Ovazc) N(O7Ua2:) N<O7O—:%) do do

aj | ~m + 72 [ N(0.015,02) [ + 73 | N(0,07) | +74| N(0,07) | +75 | do |

¢j N (0, g ,3) 50 50 50
Vali?ir IVs correlated pleiotropy uncorrelated pleiotropy  IVs fail the relevance assumption

We follow the main simulation setting and set m; + w9 + w3 = 0.02, m4 = 0.01, and 75 = 0.97.

Figures S15 and S16 summarize the results for the settings with 50% invalid IVs.
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Figure S15: Power, absolute bias, mean squared error, and coverage of the CARE estimator using
GBIC with k,, = logn and k,, = log(sy)-log(log(n)) under the main setting. Power is the empirical
power estimated by the proportion of p-values less than the significance threshold 0.05. Coverage
is the empirical coverage probability of the 95% confidence interval.
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Figure S16: Comparison of Power, absolute bias, mean squared error, and coverage of the CARE
estimator using GBIC with x,, = logn and k,, = log(sy)-log(log(n)) and other benchmark methods
under the main setting with 50% invalid IVs. Power is the empirical power estimated by the
proportion of p-values less than the significance threshold 0.05. Coverage is the empirical coverage
probability of the 95% confidence interval.

S.8.8 Nonlinear settings

In our non-linear simulation settings, we implement a four-step process to model complex genetic
relationships. First, we simulate p mutually independent single nucleotide polymorphisms (SNPs),
denoted as G = (G1,...,Gp)T. Each SNP G, follows a Binomial(2, MAF;) distribution, where
MAF represents the minor allele frequency drawn from a Uniform(0.01,0.5) distribution. Next, we
simulate an unmeasured confounder U as U = Z?:l ¢»jGj+Ey. The risk factor X is then simulated
as X = Z?zl f(G;) + BxuU + Ex, and finally, the outcome Y is modeled as Y = 60X + ByyU +
Z§:1 a;G; + Ey. In these equations, Ey, Ex, and Ey represent mutually independent random
noise terms, distributed as Ey ~ N(0,0%), Ex ~ N(0,0%), and Ey ~ N(0,0%), respectively.
These distributions are consistent with the main setting. Similarly, the coefficients v;, o, and ¢;

are generated from the same mixture of distributions as described in the main setting. To explore

different non-linear relationships, we consider three scenarios. In the first, we focus on non-linearity
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in X with a linear Y, where f(G;) = ’ylef + 72;G;, with v1; = 72; = ;. The second scenario
introduces additional complexity by incorporating interaction terms between SNPs in the model for
X, such that X = 3%, f(Gj)+2; je57ijGiGj+ BxvU + Ex, where f(Gj) remains as in the first
scenario, and S represents a randomly selected set of 20 SNP pairs for which interaction effects are
modeled. The third scenario introduces non-linearity in Y with Y = 02X +fyy U+ Zﬁ.’:l a;Gj+Ey.

Supplementary Figures S17 to S19 summarize the results for the three scenarios with 50%
invalid IVs. In the first two scenarios with non-linear X on G, CARE showed slightly inflated
Type 1 error rates, larger bias, and worse coverage (Supplementary Figures S17 and S18). The
third scenario revealed that CARE demonstrated diminished power, larger bias, and poor coverage

(Supplementary Figure S19).
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Figure S17: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the setting of non-linearity in exposure without interaction terms
with 50% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%
confidence interval.
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Figure S18: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the setting of non-linearity in exposure with interaction terms
with 50% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%

confidence interval.
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Figure S19: Power, absolute bias, mean squared error, and coverage of the CARE estimator
and several robust MR methods under the setting of non-linearity in both exposure and outcome
without interaction terms with 50% invalid IVs. Power is the empirical power estimated by the
proportion of p-values less than the significance threshold 0.05. Coverage is the empirical coverage
probability of the 95% confidence interval.
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S.8.9 Sample size variation of GWAS

We evaluate the performance of CARE estimator and benchmark MR methods with different
sample sizes of both exposure and outcome GWAS (100000, 50000, 10000, 5000). We generate
the underlying parameters using the same distribution as the main setting.

We follow the main simulation setting and set w1 + 7o+ w3 = 0.02, 74 = 0.01, and 75 = 0.97. We
vary the proportion of invalid IVs, which is defined as (w2 +m3)/(m1 +m2 4+ 73), to simulate different
situations. To maintain heritability within a biologically plausible range, we adjust the variance
of the risk factor, denoted as Ug(, across different simulation scenarios to maintain reasonable
heritability. Figure S20 to S23 summarize the results for different sample sizes. The findings

indicate that CARE’s performance deteriorates as the sample size of GWAS decreases.
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Figure S20: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with sample size = 100000, 02 = 1 x 10~° and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S21: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with sample size = 50000, 02 = 5 x 1075 and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S22: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with sample size = 10000, 02 = 8 x 1075 and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S23: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with sample size = 5000, 02 = 1 x 10~* and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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S.8.10 Variations in number of SNPs

We evaluate the performance of CARE estimator and benchmark MR methods with different sample

sizes of SNPs (100000, 50000, 10000, 5000, 1000). We generate the underlying parameters using

the following distribution:

Vi N(0,0’%) N(O’Ug) N(0,0’%) do 00

aj | ~m 5o +m2 | N(0.015,02) | + 73 [ N(0,07) | +7ma | N(0,07) [ 75 | & |

2
(Z)j 50 N (0, O'u) 50 (50 (50
Valid IVs correlated pleiotropy uncorrelated pleiotropy  IVs fail the relevance assumption

We follow the main simulation setting and set m; + w3 + w3 = 0.02, 74 = 0.01, and 75 = 0.97.

Supplementary Figure S24 to S27 summarize the results for different sample sizes of SNPs. The

findings indicate that CARE’s performance deteriorates as the sample size of SNPs decreases.
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Figure S24: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with the number of SNPs equal to 100,000, and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S25: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with the number of SNPs equal to 50,000, and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S26: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with the number of SNPs equal to 10,000, and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S27: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with the number of SNPs equal to 5,000, and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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S.8.11 Using the same liberal threshold

To assess the influence of the IV selection threshold, we compared all methods using the same
liberal threshold of p < 5 x 10~ under the main setting. We generate 200,000 independent SNPs
to represent all underlying common variants and set 02 = 05 =02 =1x107% Bxy = Byv = 1.
We set nx = ny = 500, 000 to reflect the sample size of a typical GWAS in our real data analyses.
We further set m + mo = 0.02, my = 0.01, and 75 = 0.97. We let the proportion of invalid
IVs, which is defined as mo /(71 + m2) be equal to 50%. While some competing methods showed
increased power, this often came at the cost of inflated Type I error rates and poor confidence

interval coverage. CARE maintained its advantages in terms of bias, mean squared error, and valid

inference. Figure S28 summarize the results for this setting.
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Figure S28: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the main setting with 50% invalid IVs. The significant threshold
is 5 x 1079 for all methods. Power is the empirical power estimated by the proportion of p-values
less than the significance threshold of 0.05. Coverage is the empirical coverage probability of the
95% confidence interval.
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S.8.12 Comparison of [, and [; algorithms

We conduct a series of simulations to compare the performances of these two methods with the [
constraint approach adopted in this manuscript. Firstly, we varied the proportion of invalid IVs
(30%, 50%). We also tested the performance under the setting of uniform distributed effects in
correlated pleiotropy with 50% invalid IVs (See S.8.3 for the details of the setting).

We generate 200,000 independent SNPs to represent all underlying common variants and set
o2 = O‘Z =02 =1x107% Bxy = fyrv = 1. We set nx = ny = 500,000 to reflect the sample
size of a typical GWAS in our real data analyses. We further set m + mo = 0.02, m4 = 0.01, and
w5 = 0.97. Figure S29 to S31 summarize the results for these settings. Our findings consistently
demonstrate that while both approaches maintain comparable Type I error control, absolute bias,

mean squared error (MSE), and coverage probability across various scenarios, the lp-based CARE

method achieves noticeably higher statistical power.
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Figure S29: Power, absolute bias, mean squared error, and coverage of the CARE estimator with
lp and two [; algorithms under the main setting with 30% invalid IVs. Power is the empirical power
estimated by the proportion of p-values less than the significance threshold of 0.05. Coverage is
the empirical coverage probability of the 95% confidence interval.

S.8.13 Third sample for selecting I'Vs

Our method—CARE—effectively integrates winner’s curse correction via Rao-Blackwellization with
robust handling of both measurement error and pleiotropy. However, in scenarios where the winner’s
curse is no longer a concern—for example, when a third independent sample is available for IV
selection based on association strength—some alternative methods may outperform CARE.

To investigate this, we conducted an additional simulation study using a three-sample MR
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Figure S30: Power, absolute bias, mean squared error, and coverage of the CARE estimator with
lp and two [; algorithms under the main setting with 50% invalid IVs. Power is the empirical power
estimated by the proportion of p-values less than the significance threshold of 0.05. Coverage is
the empirical coverage probability of the 95% confidence interval.
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Figure S31: Power, absolute bias, mean squared error, and coverage of the CARE estimator with
lp and two [; algorithms under the setting of uniform distributed effects in correlated pleiotropy
with 50% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%
confidence interval.
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design. The data generating process is the same as the main setting in our manuscript, which
favors other methods with parametric assumptions (See details in Section S.8.1) In this design, a
third independent sample is used exclusively for IV selection based on association strength, thereby
eliminating the need for winner’s curse correction in all methods. We uniformly apply a liberal IV
selection threshold of p < 5 x 107° to this third sample across all methods for fair comparison.
As shown in Figure S32, cML outperforms CARE in terms of both power and mean squared
error (MSE), while maintaining comparable empirical coverage. Other methods, such as cML-DP
and IVW, also exhibit competitive performances. These results highlight that when a third sample

is available and winner’s curse correction is unnecessary, CARE may not be the optimal choice.
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Figure S32: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the main setting with 50% invalid IVs, all using a third sample
for IV selection based on association strength. Power is the empirical power estimated by the
proportion of p-values less than the significance threshold 0.05. Coverage is the empirical coverage
probability of the 95% confidence interval.
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S.9 Additional Real Data Results

S.9.1 Data harmonization

We harmonize GWAS summary data through the following steps. First, we exclude genetic vari-
ants that are not available in the outcome GWAS dataset. Second, we select independent genetic
variants that have no linkage disequilibrium with other selected genetic variants. No linkage dise-
quilibrium is defined as R-squared < 0.001 with an extension of 10,000 Kb in the genome, which
has been widely adopted in applied MR studies [24]. For the benchmark methods, in line with the
current practice [24], we employ standard clumping, selecting the variant with the smallest p-value
of the SNP-exposure association when genetic variants are in linkage disequilibrium. For the pro-
posed method CARE, we employ a revised sigma-based pruning procedure and select the variant
with the smallest standard deviation of the SNP-exposure association when genetic variants are in
linkage disequilibrium [33]. We employ this revised sigma-based pruning procedure because stan-
dard clumping introduces a different type of selection bias; see [41] for related discussion. Third,
by leveraging allele frequency information, we infer the strand direction of ambiguous SNPs and
harmonize exposure-outcome datasets using the twosampleMR package. We use the default set-
ting with A = 4.06 and n = 0.5 for our proposed CARE estimator, and set A = 4.06 and A\ = 5.45

for MR-APSS and other benchmark methods, respectively.

S.9.2 Comparative analysis of four MR methods for assessing COVID-19 sever-
ity
Second, we focus on four methods with relatively good performance under our negative control
outcome analysis to alleviate the concerns of false positives. Figure S33 summarizes the results.
First, CARE identifies body mass index (BMI), obesity class 1, obesity class 2, overweight, and
extreme BMI are causally associated with COVID-19 severity. According to the Centers for Disease
Control and Prevention (CDC), the risk of severe illness (i.e., hospitalization) from COVID-19
increases sharply with higher BMI, indicating that extreme BMI may be a likely causal risk factor for
COVID-19 severity. Second, CARE identifies that HDL cholesterol (present in the blood, associated
with a lower risk of coronary heart disease) is causally associated with COVID-19 severity. Low

HDL level in the blood is reported to be associated with COVID-19 severity and most COVID-19
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patients (65%) exhibit severely low HDL levels [36]. In comparison, the competing methods fail
to identify HDL. Third, competing methods such as IVW and ¢cML-DP identify childhood obesity,
and celiac disease as causally associated with COVID-19 severity, while CARE does not. However,
limited evidence supports their roles in COVID-19 severity as these risk factors are not listed on
the CDC website, and hard to find support from the literature, suggesting that these two risk
factors identified by competing methods may be false positives. Fourth, MR-APSS identifies the
waist-to-hip ratio, which has been missed by the other three methods; however, the waist-to-hip

ratio has been reported to have no association with COVID-19 severity [16].

B2: Hospitalized covid vs. population

Body mass index A A A
Celiac disease a A &
Childhood obesity A A a

Extreme body mass index A & A

HDL cholesterol v v v
Obesity class 1 A A A
Obesity class 2 A A A
Overweight A A A
Waist-to-hip ratio A A A
A CARE 5 - A p>005
cML-DP N A 0.001<p<0.05
A VW A o<0001

A MR-APSS

Figure S33: Significant causal exposure COVID-19 severity pairs identified by CARE, cML-DP,
IVW, and MR-APSS. We summarize the significant causal exposure identified by at least one
method under Bonferroni correction.

S.9.3 Supplementary tables and figures for real data results
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GWAS 1D Trait # SNP N PMID

ieu-a-298 Alzheimer’s disease™ 11,633 74,046 | 24162737
ieu-a-45 Anorexia nervosa 1,149,254 17,767 | 24514567
ieu-a-44 Asthma* 546,183 26,475 | 20860503
ieu-a-806 Autism* 9,499,590 10,263 | 23453885
ieu-a-801 Bipolar disorder* 2,427,221 16,731 | 21926972
ieu-a-29 Birth length 2,201,972 28,459 | 25281659
ieu-a-1083 Birth weight 16,245,524 143,677 | 27680694
ieu-a-2 Body Mass Index* 2,555,511 339,224 | 25673413
ieu-a-1109 Cardioembolic stroke 2,421,920 21,185 | 26935894
ieu-a-1058 Celiac disease 38,037 24,269 | 22057235
ieu-a-1096 Childhood obesity 2,442,739 13,848 | 22494627
ieu-a-1102 Chronic kidney disease* 2,191,877 117,165 | 26831199
ieu-a-7 Coronary heart disease™* 9,455,779 123,504 | 26343387
ieu-a-12 Crohn’s disease* 124,888 51,874 | 26192919
ieu-a-1000 Depressive symptoms™ 6,524,475 161,460 | 27089181
ieu-a-1040 Difference in height between adolescence and adulthood | 2,401,290 9,228 23449627
ieu-a-1037 Difference in height between childhood and adulthood | 2,384,832 10,799 | 23449627
ieu-a-85 Extreme body mass index* 1,984,814 16,068 | 23563607
ieu-a-86 Extreme height 1,966,557 16,196 | 23563607
ieu-a-87 Extreme waist-to-hip ratio 1,939,901 10,255 | 23563607
ieu-a-1054 Gout 2,450,548 69,374 | 23263486
ieu-a-299 HDL cholesterol* 2,447,442 187,167 | 24097068
ieu-a-89 Height 2,550,859 253,288 | 25282103
ieu-a-31 inflammatory bowel disease* 12,716,084 34,652 | 26192919
ieu-a-814 Ischaemic stroke 393,465 517 17434096
ieu-a-300 LDL cholesterol 2,437,752 173,082 | 24097068
ieu-a-965 Lung adenocarcinoma* 8,881,354 18,336 | 24880342
ieu-a-966 Lung cancer™ 8,945,893 27,209 | 24880342
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https://gwas.mrcieu.ac.uk/datasets/ieu-a-298/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-45/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-44/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-806/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-801/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-29/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1083/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-2/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1109/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1058/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1096/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1102/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-7/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-12/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1000/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1040/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1037/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-85/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-86/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-87/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1054/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-299/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-89/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-31/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-814/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-300/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-965/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-966/

GWAS 1D Trait # SNP N PMID
ieu-a-1025 Multiple sclerosis™* 156,632 38,589 | 24076602
ieu-a-798 Mycocardial infarction*® 9,289,492 171,875 | 26343387
ieu-a-1007 Neuroticism 6,524,433 170,911 | 27089181
ieu-a-90 Obesity class 1* 2,380,428 98,697 | 23563607
ieu-a-91 Obesity class 2* 2,331,456 72,546 | 23563607
ieu-a-92 Obesity class 3* 2,250,779 50,364 | 23563607
ieu-a-93 Overweight™* 2,435,045 158,855 | 23563607
ieu-a-975 Paget’s disease 2,479,235 3,440 21623375
ieu-a-812 Parkinson’s disease* 453,218 5,691 19915575
ieu-a-833 Rheumatoid arthritis* 9,739,304 80,799 | 24390342
ieu-a-22 Schizophrenia* 9,444,231 82,315 | 25056061
ieu-a-967 Squamous cell lung cancer 8,893,750 18,313 | 24880342
ieu-a-1009 Subjective well being 2,268,675 298,420 | 27089181
ieu-a-301 Total cholesterol 2,446,982 187,365 | 24097068
ieu-a-26 Type 2 diabetes* 2,473,442 69,033 | 22885922
ieu-a-970 Ulcerative colitis 156,116 47,745 | 26192919
ieu-a-72 Waist-to-hip ratio 2,562,516 224,459 | 25673412
ukb-b-553 Ease of skin tanning 9,851,867 453,065
ukb-d-1747_1 Hair colour (natural, before greying): Blonde 13,586,531 360,270
ukb-d-1747_2 Hair colour (natural, before greying): Red 13,586,531 360,270
ukb-d-1747_3 Hair colour (natural, before greying): Light brown 13,586,531 360,270
ukb-d-1747 4 Hair colour (natural, before greying): Dark brown 13,586,531 360,270
ukb-d-1747_5 Hair colour (natural, before greying): Black 13,586,531 360,270

Table 1: 45 exposures and six negative control outcomes included in the current study. GWAS ID,
Trait, # SNP, N, and PMID stand GWAS ID used in IEU OpenGWAS database, exposure name,
number of SNPs in the corresponding full GWAS summary data, sample size of the corresponding
study, and PMID used in PubMed, respectively. Traits with stars represent those have been
reported by the CDC or in peer-reviewed literature as risk factors for COVID-19 severity.
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https://gwas.mrcieu.ac.uk/datasets/ieu-a-1025/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-798/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1007/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-90/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-91/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-92/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-93/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-975/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-812/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-833/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-22/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-967/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-1009/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-301/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-26/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-970/
https://gwas.mrcieu.ac.uk/datasets/ieu-a-72/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-533/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-1747_1/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-1747_2/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-1747_3/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-1747_4/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-1747_5/
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Figure S34: QQ plots of p-values in negative control outcome analysis for fixed-effect IVW (panel
A) and CARE using clumping to select candidate IVs (panel B). The gray-shaded part is 95%

confidence interval.

Condition CARE cML-DP VW MR-APSS

B SE p-value B SE p-value 153 SE p-value 153 SE p-value
Body mass index 0.3893 0.0595 5.96E-11 | 0.3952 0.0533 1.22E-13 | 0.4024 0.0580 4.11E-12 | 0.4006 0.1008 7.00E-05
Celiac disease 0.0213 0.0189  0.2603 | 0.0293 0.0089  0.0011 | 0.0299 0.0086  0.0005 | 0.0200 0.0166  0.2291
Childhood obesity 0.0749 0.0280  0.0074 | 0.0915 0.0226 5.49E-05 | 0.0946 0.0230 3.88E-05 | 0.0540 0.0231  0.0192
Extreme body mass index | 0.0746  0.0194  0.0001 0.0561 0.0212  0.0081 | 0.0545 0.0191  0.0042 | 0.0622 0.0180  0.0005
HDL cholesterol -0.1840 0.0509  0.0003 | -0.0598 0.0315  0.0573 | -0.0809 0.0359  0.0244 |-0.1177 0.0836  0.1591
Obesity class 1 0.1916 0.0379 4.27E-07 | 0.1312 0.0254 2.47E-07 | 0.1288 0.0257 5.61E-07 | 0.1461 0.0307 2.01E-06
Obesity class 2 0.0924 0.0266 ~ 0.0005 | 0.0805 0.0222  0.0003 | 0.0793 0.0245 0.0012 | 0.0549 0.0203  0.0069
Overweight 0.2184 0.0602  0.0003 | 0.1475 0.0407  0.0003 | 0.1487 0.0443 0.0008 | 0.1621 0.0514  0.0016
Waist-to-hip ratio 0.3279 0.1139  0.0040 | 0.1980 0.0841 0.0186 | 0.2134 0.0842 0.0113 | 0.4114 0.0990 3.27E-05

Table 2: Association between significant exposure COVID-19 severity pairs using four methods:
CARE, cML-DP, IVW, and MR-~APSS. Values represent effect sizes (), standard errors (SE), and

p-values.
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