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Abstract

In the past decade, the increased availability of genome-wide association studies summary

data has popularized Mendelian Randomization (MR) for conducting causal inference. MR

analyses, incorporating genetic variants as instrumental variables, are known for their robustness

against reverse causation bias and unmeasured confounders. Nevertheless, classical MR analyses

utilizing summary data may still produce biased causal effect estimates due to the winner’s

curse and pleiotropy issues. To address these two issues and establish valid causal conclusions,

we propose a unified robust Mendelian Randomization framework with summary data, which

systematically removes the winner’s curse and screens out invalid genetic instruments with

pleiotropic effects. Unlike existing robust MR literature, our framework delivers valid statistical

inference on the causal effect without requiring the genetic pleiotropy effects to follow any

parametric distribution or relying on perfect instrument screening property. Under appropriate

conditions, we demonstrate that our proposed estimator converges to a normal distribution, and

its variance can be well estimated. We demonstrate the performance of our proposed estimator

through Monte Carlo simulations and two case studies.

Keywords: Bootstrap aggregation; GWAS; Post-selection inference.

1 Introduction

1.1 Background and motivation

Drawing inferences about cause and effect lies at the core of uncovering essential scientific princi-

ples. In biological and biomedical sciences, causal inference deepens our understanding of under-

lying etiology and advances developments in disease diagnosis, treatment, and prevention. While
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observational data present unique opportunities for causal inference by employing large and rich

datasets, causal discoveries from observational studies are often susceptible to unmeasured con-

founding and reverse causation bias issues [26, 15, 17, 46]. As a remedy, Mendelian Randomization

(MR) has become a popular research design. Its popularity is not only ascribed to the fact that

MR mitigates unmeasured confounding bias by using genetic variants as instrumental variables

(IVs) to assess the causal relationship between exposures and outcomes but also credited to the

increasing availability of large-scale genome-wide association studies (GWAS) summary data on

various complex traits [46, 11, 29, 45].

However, MR with GWAS summary may still produce biased estimates of causal effects due

to several sources of bias. These include measurement error in exposure GWAS, winner’s curse

bias resulting from using the same exposure GWAS for both IV selection and effect estimation,

and most crucially, bias from including invalid IVs with pleiotropy [42]. Firstly, the effect of

IV on exposure is measured by exposure GWAS, which inherently contains measurement error.

Ignoring such measurement error can produce biased causal effect estimates, especially when the

strength of IVs is weak [54, 33]. Secondly, the practice of selecting genetic instruments based

on their estimated associations with the exposure variable from GWAS, and using the same data

for both instrument selection and estimation, can lead to biased causal effect estimates due to

the winner’s curse phenomenon [58, 57, 18]. Lastly, typical MR analyses inevitably involve some

invalid IVs that either directly affect the outcome or through unmeasured confounding factors—a

phenomenon known as pleiotropy [23, 52]. The nature of pleiotropy is widespread and usually

unknown or complex [52]. Failure to fully account for pleiotropy will also lead to biased causal

effect estimates.

A broad literature addresses the biases discussed above to improve the credibility of MR anal-

yses, yet no single approach can simultaneously tackle all these biases. Some methods have made

progress in addressing individual issues. For instance, [54] formally tackled the measurement error

bias in the popular inverse variance weighted estimator, while [33] proposed a randomized instru-

ment selection and Rao-Blackwellization procedure to address both measurement error bias and

winner’s curse bias. However, the validity of these methods relies heavily on the assumption that

all IVs either have no pleiotropic effects or exhibit balanced pleiotropic effects—an assumption

unlikely to hold in practice due to the unknown and complex nature of pleiotropy [52], potentially
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leading to biased causal effect estimates.

To account for widespread pleiotropy, many robust MR methods have been proposed. These

methods primarily focus on addressing the issue raised by invalid IVs, but often at the expense of

neglecting measurement error and winner’s curse biases. They can be broadly categorized into two

strategies. The first strategy imposes normal mixture model assumptions on the pleiotropic effects.

By modeling the observed GWAS summary data within a joint likelihood function, these methods

simultaneously estimate the unknown parameters and the desired causal effect. Such methods

include RAPS [56], ContMix [9], MR-APSS [25], MRMix [38]. However, as demonstrated in our

simulation studies, when the normal mixture model assumption is violated, these approaches tend

to produce false positive findings or have low detection power. Moreover, incorporating procedures

to address winner’s curse bias, such as that proposed by [33], is challenging within this framework

as it may violate parametric modeling assumptions and result in an incorrect likelihood function.

The second strategy avoids imposing parametric modeling assumptions on the pleiotropic effects.

Instead, it adopts penalization methods to screen out invalid instruments with pleiotropic effects,

using only the selected valid instruments for causal effect estimation. Such methods include, for

example, cML [53] and MR-Lasso [31]. However, these methods either lack rigorous statistical

justifications or require that the selected IVs are valid and include all valid IVs (a condition we refer

to as “perfect IV screening”). For example, [53] prove that their procedure can screen out all invalid

IVs with a probability tending to one under the asymptotic regime where the number of IVs is fixed,

and the sample size tends to infinity. When this is achieved, the resulting causal effect estimate

is consistent and asymptotically normal. However, the theoretical results under this asymptotic

regime do not account for how the magnitudes of the pleiotropic effects impact the validity of

statistical inference. In fact, perfect IV screening is often unattainable when the pleiotropic effects

are small, and the differences between valid and invalid IVs in MR studies are subtle. Notably,

two-sample MR is a rapidly evolving field with numerous methodological advancements, such as

[35, 30, 19]. For comprehensive reviews of statistical methods in MR, we refer readers to [43] and

[1].

3



1.2 Contribution

To bridge the aforementioned gaps in the existing literature, we propose a unified MR framework

with summary data that simultaneously addresses winner’s curse bias, bias from measurement error

in exposure GWAS, and bias from invalid IVs with pleiotropy (Section 3). Specifically, we propose

an l0 constrained optimization framework that can simultaneously screen out invalid IVs, account

for measurement error, and seamlessly integrate with the winner’s removal step from [33]. Moreover,

we demonstrate that the proposed l0 constrained optimization framework maintains computational

efficiency due to the special form of our objective function. Furthermore, to improve statistical

efficiency, we adopt a bootstrap aggregation procedure and use a non-parametric delta method to

perform valid inference on the final causal effect.

On the theoretical side, we provide comprehensive theoretical investigations of the proposed

method in Section 4. We prove that the final estimator in our proposed method is asymptotically

unbiased and converges to a normal distribution even in the presence of directional pleiotropy.

Moreover, different from existing theoretical analyses in robust MR, we show that our method

can deliver consistent causal effect estimates without perfect invalid IV screening; see detailed

discussion in Supplementary Material Section S.6. In brief, our theoretical investigation indicates

that our proposed method can screen out IVs with large pleiotropic effects, and the resulting causal

effect estimator remains consistent even if the selected IVs include some invalid ones with small

pleiotropic effects. These theoretical investigations better characterize scenarios where our method

performs well and demonstrate its robustness.

Benefiting from the above features in both methodological and theoretical aspects, we demon-

strate that our proposed MR framework delivers robust causal effect estimates with improved sta-

tistical power in simulated Monte Carlo experiments (Section 5) and in two case studies (Section 6).

From our simulated Monte Carlo experiments, we confirm that our proposed method outperforms

benchmark methods in terms of type 1 error rates, power, absolute bias, mean squared error, and

coverage probability in most scenarios. The results also highlight the importance of simultaneously

correcting the winner’s curse bias and accounting for measurement error bias and generic pleiotropic

effects. From our case study of negative control outcome analyses, in which the population causal

effects are believed to be zero by design, we confirm that our approach yields well-controlled Type I
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error rates (Section 6.1). From our case study to identify causal risk factors for COVID-19 severity,

our approach identifies more causal risk factors than the existing approaches, and the identified

causal exposures by our proposed method have more supporting evidence.

2 Framework and challenges

In this section, we review the classical two-sample Mendelian Randomization (MR) framework with

summary data. We then revisit the pleiotropic effects, measurement error bias, and winner’s curse

bias within this framework.

Referring to the causal diagram in Figure 1, we let X denote the exposure, Y the outcome, and

U the unmeasured confounder between the exposure and the outcome. The goal of MR analysis is

to estimate the causal effect (denoted by θ) of the exposure variable X on the outcome variable Y .

However, in the presence of unmeasured confounder U , it is challenging to directly estimate θ solely

using the information stored in X and Y . To overcome this, two-sample MR analyses incorporate

p mutually independent SNPs G1, . . . , Gp as instrumental variables (IVs) and estimate θ using the

estimated association pairs {(β̂Xj , β̂Yj )}
p
j=1 collected from two independent GWAS datasets, where

β̂Xj and β̂Yj are the estimated effect sizes for IV j in exposure and outcome GWAS, respectively.

Here, genetic variant Gj ∈ {0, 1, 2} represents the number of effect alleles of a single-nucleotide

polymorphism (SNP) j inherited by an individual. Following the two-sample summary-data MR

literature [54, 56], we assume the following linear structural equation model:

U =

p∑
j=1

ϕjGj + EU ,

X =

p∑
j=1

γjGj + βXUU + EX ,

Y =

p∑
j=1

αjGj + βY UU + θX + EY ,

(1)

where EU , EX , and EY are mutually independent random noises. EU is independent of (G1, . . . , Gp),

and EX and EY are independent of (G1, . . . , Gp, U). To allow for the valid inference of the causal

effect θ, we need Gj (j = 1, . . . , p) to be valid IVs in the sense that they satisfy the following

three conditions: (1) γj ̸= 0, meaning that Gj is associated with X (relevance assumption); (2)
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ϕj = 0, meaning that Gj has no correlated pleiotropic effect with Y (effective random assignment

assumption); (3) αj = 0, meaning that Gj has no uncorrelated pleiotropic effect with Y (exclusion

restriction assumption).

Provided that all included genetic IVs are valid, two-sample MR analyses can deliver valid

inference on θ by appropriately using information stored in two independent GWAS datasets. To

provide some justifications for this claim, we follow the causal model proposed in [37]. In particular,

in the structural equation models given in Eq (1), the total effect of SNP Gj on Y and the total

effect of Gj on X are given by:

βYj = E[Y |do(Gj = gj + 1)]− E[Y |do(Gj = gj)] = αj + βY Uϕj + θ · (γj + βXUϕj),

βXj = E[X|do(Gj = gj + 1)]− E[X|do(Gj = gj)] = γj + βXUϕj .

For a valid IV Gj , when Gj satisfies ϕj = 0 (effective random assignment assumption) and αj = 0

(exclusion restriction assumption), the target causal effect θ will satisfy βYj = θβXj , where βXj = γj

and βYj = θγj . If the relevance assumption γj ̸= 0 is also met, we are then able to use βYj and

βXj to assist valid inference on θ, as they can be well estimated through the estimated association

pairs {(β̂Xj , β̂Yj )}
p
j=1 collected from two independent GWAS dataset in two-sample summary-data

MR framework.

However, in practice, due to the widespread pleiotropy in human genetics [23, 52], the effective

random assignment (ϕj = 0) and exclusion restriction assumptions (αj = 0) are frequently violated,

leading to invalid IVs. In the presence of invalid IVs, the total effect of Gj on Y can be expressed

as:

βYj = θ · βXj︸ ︷︷ ︸
causal
effect

+ αj︸︷︷︸
uncorrelated
pleiotropy

+βY U · ϕj︸ ︷︷ ︸
correlated
pleiotropy

≡ θ · βXj + rj . (2)

Here, αj is the uncorrelated pleiotropic effect that captures the direct effect of Gj on Y , and

βY U ·ϕj is the correlated pleiotropic effect that captures the effect of Gj on Y through the pathway

Gj → U → Y . Their combined effect, rj = αj + βY U · ϕj , represents the total effect of a genetic

variant Gj on the outcome Y induced by pleiotropy. These violations make it challenging to

accurately estimate θ using MR. If not appropriately accounted for, genetic pleiotropy can result
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in biased causal effect estimates in MR analyses (see Section 5 for our simulation results).

On top of the potential bias induced by pleiotropic effects, two additional sources of bias in MR

analyses are measurement error bias and winner’s curse bias. Measurement error bias arises from

the fact that the true effect of an IV on the exposure, βXj , is unobserved. Instead, we rely on β̂Xj ,

an estimate derived from exposure GWAS (I), which inherently contains measurement error, to

conduct MR. The winner’s curse bias, on the other hand, is induced by pre-selecting IVs that are

strongly associated with the exposure variable to meet the relevance assumption (that is, γj ̸= 0).

This selection exercise is often based on hard-thresholding measured SNP z-scores obtained from

GWAS (I): SNP j is selected if |β̂Xj/σXj | > λ, where λ is a pre-specified cut-off value, and β̂Xj

and σXj are estimated effect size and its standard error from exposure GWAS dataset, respectively.

The selected IVs are then used to construct downstream causal effect estimators. The selected

IV-exposure associations tend to overestimate the underlying true association effects βXj , as the

distribution of any β̂Xj that survives the selection is a truncated Gaussian and the post-selection

mean is no longer βXj when commonly used Gaussian assumption on β̂Xj is adopted. Subsequently,

by doubly using the data in GWAS (I) for IV selection and estimation, classical MR estimators are

expected to be biased and have an intractable limiting distribution, making statistical inference

problematic.

In the rest of this manuscript, we employ the following model frequently adopted in the

Mendelian Randomization literature [56, 38, 53]:

Assumption 1 (Measurement error model) (i)For any j ̸= j′, (β̂Yj , β̂Xj ) and (β̂Yj′ , β̂Xj′ ) are

mutually independent. (ii)For each j, the association pair (β̂Yj , β̂Xj ) followsβ̂Xj
β̂Yj

 ∼ N

 βXj

θβXj + rj

 ,

σ2
Xj

0

0 σ2
Yj


 .

Furthermore, there exists a positive integer n → ∞ and positive constants m and M such that

m
n ≤ σ2

Xj
≤ M

n , m
n ≤ σ2

Yj
≤ M

n for j = 1, . . . , p.

The assumption of independent SNPs, while seemingly stringent, is grounded in established

practice in two-sample MR analyses [54, 56, 33]. This approach helps ensure that each selected SNP

represents a signal from a unique genetic locus, thereby mitigating potential confounding effects
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from LD and facilitating clearer interpretation of causal effect estimates. We acknowledge that

alternative cis-MR methods such as Transcriptome-Wide Association Studies (TWAS) [21, 50] and

Proteome-Wide Association Studies (PWAS), effectively utilize correlated SNPs, particularly for

investigating relationship between omics and complex traits. However, as the reviewer suggested,

when inferring causal relationships between complex traits/diseases (such as the two case studies in

Section 6), using independent IVs from the whole genome is typically efficient enough and simple

to implement. This strategy is also widely adopted in the literature. Therefore, in line with this

common practice, we adopt the independence assumption. To ensure independent IVs, we apply a

sigma-based LD pruning method [33].

3 Methodology

3.1 Measurement error correction and invalid IV screening

To estimate the causal effect θ, a straightforward approach is to replace the population association

effects with their empirical estimates from GWAS in the causal structure equation in (2). Given that

all population associations are measured with error in GWAS, the sample analogue of the structure

equations can be represented as the following two-stage regression model with measurement errors:

β̂Yj︸︷︷︸
response

= θ︸︷︷︸
target

parameter

· βXj︸︷︷︸
true

covariate

+ rj︸︷︷︸
unknown
parameter

+ νj︸︷︷︸
noise

, β̂Xj = βXj + uj︸ ︷︷ ︸
covariates are

measured with error

,

where νj and uj are centered noises.

To operationalize an accurate estimate of θ using the above two-stage least squares model, we

first consider a situation where a set of IVs with βXj ̸= 0 (denoted as S) is known. Our method does

not require S to be known, and we will discuss the selection of S and the practical implementation

of our algorithm in the next subsection. With a known S, we propose estimating θ by solving the
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following constrained optimization problem:

min
θ,rj

l
(
θ, {rj}j∈S

)
=
∑
j∈S

lj
(
θ, rj

)
≜
∑
j∈S

(β̂Yj − θ · β̂Xj − rj)
2

σ2
Yj

−
∑
j∈S

θ2 · σ2
Xj

σ2
Yj

1(rj=0),

s.t.
∑
j∈S

1(rj=0) = v. (3)

Intuitively, the objective function above is a bias-corrected least squares function designed to ac-

count for measurement error, subject to the constraint that the adopted IVs for estimating θ are

valid. In the following, we will show that the optimization problem above not only accounts for the

measurement errors in β̂Xj but also accurately identifies invalid IVs with rj ̸= 0. This is achieved

with computational efficiency, even when an l0-type constraint is adopted. As a result, the solution

of this optimization problem provides an accurate estimate of θ.

Figure 1: The causal diagram and GWAS (I) and (II) summary data adopted in the two-sample
MR. The corresponding causal effect for each pathway is labeled near the directed edge.

To start with, when the set of IVs with rj = 0 is known, the solution of the above optimization

problem provides an unbiased estimate of θ. As in this case, we have

L(θ) ≜ min
rj

l
(
θ, {rj}j∈S

)
=

1

2

∑
j∈V

(β̂Yj − θ · β̂Xj )2

σ2
Yj

− 1

2

∑
j∈V

θ2 · σ2
Xj

σ2
Yj

.

We can verify that L(θ) is unbiased for the weighted least squares loss function in the sense that

E
[
L(θ)

]
= E

[∑
j∈V(β̂Yj − θ · βXj )2/(2σ2

Yj
)
]
. This suggests that its minimizer is unbiased for the

causal effect θ.

Next, as the set of IVs with rj = 0 is unknown, Problem (3) incorporates an l0-type constraint
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to screen out invalid IVs. While classical l0-type optimization problems are solved by their convex

relaxations, this technique does not apply to our problem due to the inclusion of a measurement

error bias correction term in our objective function (that is, the term
∑

j∈Sλ θ
2 · σ2

Xj
/σ2

Yj
1(rj=0)).

To address this issue, we propose an iterative algorithm that mimics block coordinate descent and

guarantees the decay of our objective function in Algorithm 3; see justification in the Supplementary

Material Section S.1.

Lastly, the number of valid IVs v is unknown and requires tuning. To choose the final set of

valid IVs, we propose a generalized Bayesian Information Criteria (GBIC), that is:

GBIC(v) = −2l̂
(
θ̂(v), {r̂j(v)}j∈V̂

)
+ κn · (s− v), s = |S|,

where κn = log(n), and choose the final set of valid IVs by minimizing the GBIC. The proposed

GBIC with κn = log(n) is different from the classical BIC criteria that adopts κn = log(sλ).

The reason for this choice is that the classical model selection consistency result of the BIC is

established in the asymptotic regime with fixed sλ. As we are in an asymptotic regime with sλ →∞,

our proposed GBIC criteria adjusts κn accordingly to ensure invalid IV screening consistency. In

particular, in Section S.6 of the Supplemental Material, we demonstrate that our procedure provides

a consistent causal effect estimator without requiring the perfect IV screening property under a

simplified scenario and Conditions 1-2 and 8-9. One of these conditions imposes a constraint on the

penalization coefficient κn: κn ≫ log(sλ). We argue that κn = log(n) is a feasible choice to satisfy

this condition, as the order of the sample size is typically larger than the order of the number of

selected relevant IVs in a two-sample MR study.

3.2 Unknown S and practical implementation

We now consider the realistic scenario where the set S is unknown. Because the collection of

relevant IVs is not known, practitioners typically perform a pre-selection procedure to identify

IVs strongly associated with the exposure. These selected IVs are then used to estimate the causal

effect. As discussed in Section 2, selecting genetic instruments based on their estimated associations

with the exposure variable from GWAS and using the same data for both instrument selection and

estimation can lead to biased causal effect estimates due to the winner’s curse phenomenon. To
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address the issue of winner’s curse bias when S is unknown, we integrate the proposed method from

the previous section with the approach described in [33] to perform Rao-Blackwellized randomized

instrument selection.

For each SNP j = 1, 2, . . . , p, we generate a pseudo SNP-exposure association effect Zj ∼

N (0, η2), and select SNP j if
∣∣∣ β̂XjσXj

+ Zj

∣∣∣ > λ. Define the set of selected SNPs as Sλ =
{
j :∣∣∣ β̂XjσXj

+ Zj

∣∣∣ > λ, j = 1, 2, . . . , p
}

and its cardinality |Sλ| = sλ. For each selected SNP j ∈ Sλ, we

construct an unbiased estimator of βXj as

β̂Xj ,RB = β̂Xj −
σXj
η

ϕ
(
Aj,+

)
− ϕ

(
Aj,−

)
1− Φ

(
Aj,+

)
+Φ

(
Aj,−

) , where Aj,± = −
β̂Xj
σXjη

± λ

η
,

Algorithm 1: Algorithm to solve the optimization problem in (4)

Input: Data inputs and initial parameters
Output: Estimated parameters θ̂ and r̂j

Initialization Set k = 0, generate θ(0) ∼ Uniform

(
min1≤j≤sλ

β̂Yj

β̂Xj

,max1≤j≤sλ

β̂Yj

β̂Xj

)
;

Block Coordinate Descent
repeat

Fix θ(k), update r
(k+1)
j ;

Order
(β̂Yj

−θ(k)·β̂Xj,RB)
2

σ2
Yj

−
θ2·σ̂2

Xj,RB

σ2
Yj

, j = 1, 2, . . . , sλ − v in decreasing order;

Set r
(k+1)
j = β̂Yj

− θ(k)β̂Xj ,RB for the largest sλ − v components, j = 1, . . . , sλ − v, and

r
(k+1)
j = 0 for j = sλ − v + 1, . . . , sλ;

Fix r
(k+1)
j , update θ(k) by minimizing the following objective function:

θ(k+1) = argmin
θ∈R

∑
j∈Sλ

(
β̂Yj
− θ · β̂Xj ,RB − r

(k+1)
j

)2
− θ2 · σ̂2

Xj ,RB

σ2
Yj

1
(r

(k+1)
j =0)

.

If
∣∣∣ θ(k+1)−θ(k)

θ(k)

∣∣∣ < 10−7 then Stop and output θ̂(v) = θ(k+1) and r̂j(v) = r
(k+1)
j ;

else Set k = k + 1;

until
∣∣∣ θ(k+1)−θ(k)

θ(k)

∣∣∣ < 10−7;

end
Valid IV Selection via GBIC

for v = 2, . . . , sλ do
Calculate

GBIC(v) = −2l̂
(
θ̂(v), {r̂j(v)}j∈V̂

)
+ log(n) · (sλ − v);

end

Select V̂ with the smallest GBIC(v);

end

ϕ(·) and Φ(·) denote the standard normal density and cumulative distribution functions. Here,
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η is a pre-specified constant that reflects the noise level of the pseudo SNPs. We recommend using

η = 0.5 as a default value [33]. This choice balances the need for sufficient randomization to address

the winner’s curse bias while maintaining the stability of the selection process. The above procedure

only randomizes the IV selection near the cut-off value λ, which implies that the strong IVs with

large βXj are invariably selected. Here, the choice of the significance cutoff (λ) for selecting IVs

presents a trade-off between including a sufficient number of informative IVs and maintaining the

overall strength of the selected IV set. While lowering the cutoff may improve statistical power by

incorporating more IVs with moderate effects, setting it too low can introduce weak or null IVs

that potentially violate the relevance assumption and compromise the validity of the MR analysis.

In our proposed method, we provide a sufficient condition to ensure the asymptotic normality of

the estimator, which depends on the average strength of the selected IVs relative to the cutoff

value. Specifically, we choose a cutoff of 5 × 10−5, commonly used as a threshold for suggestive

significance in GWAS, to strike a balance between including informative IVs and maintaining

the validity of the selected IV set. We note that Rao-Blackwellization has also been applied in

[4] to efficiently combine information from an initial GWAS and a replication study to obtain

unbiased estimates of SNP effect sizes. Our approach differs as we do not require a replication

study to construct an unbiased estimation for βXj (see Supplement Materials Section 5 for details).

Benefiting from such randomized IV selection, β̂Xj ,RB is free of winner’s curse bias, implying that

E[β̂Xj ,RB|j ∈ Sλ] = βXj . Therefore, our proposed bias-corrected least squares objective function

and l0 constraint optimization framework in the previous section can be applied:

min
θ∈R,rj∈R

l̂
(
θ, {rj}j∈Sλ

)
, s.t.

∑
j∈Sλ

1(rj=0) = v. (4)

As one reviewer suggested, we also implemented two l1-type methods and make comparison with

our l0 based method through simulations. Our results demonstrate that while both approaches

maintain comparable Type I error control, absolute bias, mean squared error (MSE), and coverage

probability across various scenarios, the l0-based CARE method achieves higher statistical power.

We have added relevant descriptions, methods, and results in Supplemental Material Section S.2-S.3
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and Section S.8.12. where the loss function is defined as

l̂
(
θ, {rj}j∈Sλ

)
=
∑
j∈Sλ

l̂j
(
θ, rj

)
=
∑
j∈Sλ

(β̂Yj − θ · β̂Xj ,RB − rj)
2

σ2
Yj

−
θ2 · σ̂2

Xj ,RB

σ2
Yj

1(rj=0),

σ̂2
Xj ,RB = σ2

Xj

(
1− 1

η2
Aj,+ϕ(Aj,+)−Aj,−ϕ(Aj,−)

1− Φ(Aj,+) + Φ(Aj,−)
+

1

η2

( ϕ(Aj,+)− ϕ(Aj,−)

1− Φ(Aj,+) + Φ(Aj,−)

)2)
.

3.3 Bootstrap aggregation and statistical inference

Since the IV screening step can be rather noisy and we do not expect to perfectly screen out all

invalid IVs, we next incorporate bagging (or bootstrap aggregation) [6] to reduce IV screening

variability and to further improve statistical efficiency. Then, we adopt the non-parametric delta

method [13] to construct a confidence interval for our bagged estimator.

To be specific, we draw bootstrap sample B times from Sλ. For the b-th bootstrap sample

(Denoted by S∗λ,b), we adjust the loss function as l̂∗b
(
θ, {rj}j∈Sλ

)
=
∑

j∈Sλ w
∗
jb l̂j
(
θ, rj

)
, where w∗

jb

is the number of occurrences in S∗λ,b for j-th IVs in Sλ. Then, we conduct the invalid IV screening

step for each bootstrap sample S∗λ,b and select V̂b =
{
j : r̂jb = 0 and j ∈ S∗λ,b

}
. The downstream

causal estimator is derived by aggregating the estimated effects from all bootstrap samples, that is:

θ̂b =

∑
j∈V̂b β̂Yj β̂Xj ,RB/σ

2
Yj∑

j∈V̂b(β̂
2
Xj ,RB

− σ̂2
Xj ,RB

)/σ2
Yj

, θ̃ =
1

B

B∑
b=1

θ̂b, (5)

where θ̂b is obtained by refitting the loss function l̂
(
θ, {rj}j∈V̂b

)
.

To provide valid statistical inference on the true causal effect θ, we use the non-parametric

delta method [14] to estimate the variance of the bagged estimator with σ̂2
n =

∑
j∈SλŜ

2
j , where

Ŝj = B−1
∑B

b=1(w
∗
ib−B−1

∑B
k=1w

∗
ik)(θ̂b− θ̃). Then we construct a (1−α)-level confidence interval

for θ with
[
θ̃ − zα/2 · σ̂n, θ̃ + zα/2 · σ̂n

]
. Here α is the upper α/2-quantile of the standard normal

distribution.

In the remainder of this manuscript, we refer to the proposed method as Causal Analysis with

Randomized Estimators (CARE). The formalization of our proposed algorithm can be found in

Algorithm 2. We also provide the discussion on the time complexity of this algorithm in Section

S.1 in Supplemental Material.
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4 Theoretical investigations

To discuss our theoretical investigations in detail, we begin by revisiting and introducing notations

and assumptions. Recall that the set of selected IVs after rerandomization is defined as Sλ =
{
j :

|
β̂Xj
σXj

+ Zj | > λ, j = 1, . . . , p
}
and its cardinality is denoted as |Sλ| = sλ. We next define κλ as

the average of squared standardized IV effects to measure the selected IV strength in Sλ, that

is κλ = 1
sλ

∑
j∈Sλ

β2
Xj

σ2
Yj

. Among the selected IVs after rerandomization, we denote Vλ =
{
j : j ∈

Sλ and rj = 0
}
as the set of valid IVs in Sλ and denote its cardinality as |Vλ| = vλ.

Considering the dual sources of randomness in our proposed estimator (one from the original

GWAS sample, and the other from the bootstrap resampling), we separate these two sources of

randomness by denoting the conditional expectation taken with respect to bootstrap resampling

as E∗[ · ] = E
[
·
∣∣Sλ,{(β̂Yj , β̂Xj,RB)}j∈Sλ]. Next, we introduce three additional assumptions for our

theoretical investigations:
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Algorithm 2: CARE

for j ← 1 to p do
Generate a pseudo SNP-exposure association effect Zj ∼ N (0, η2),

If

∣∣∣∣ β̂Xj

σXj
+ Zj

∣∣∣∣ > λ, Then select SNP j.

end

Define the set of selected SNPs as Sλ = {j :
∣∣∣∣ β̂Xj

σXj
+ Zj

∣∣∣∣ > λ, j = 1, 2, . . . , p} and |Sλ| = sλ,

for j ∈ Sλ do

Construct an unbiased estimator of β̂Xj ,RB as

β̂j,RB = β̂Xj −
σXj

η

ϕ (Aj,+)− ϕ (Aj,−)

1− Φ (Aj,+) + Φ (Aj,−)
, where Aj,± = −

β̂Xj

σXj
η
± λ

η

and ϕ(·) and Φ(·) denote the standard normal density and cumulative distribution functions.
end
for b = 1 to B do

Draw bootstrap sample S∗λ,b from Sλ,
Conduct the invalid IV screening procedure for S∗λ,b

min
θ∈R,rj∈R

l̂∗b (θ, {rj}j∈Sλ
) :

∑
j∈S∗

λ,b

1rj=0 = v

 ⇒ V̂∗
b (v) =

{
j : r̂j = 0, j ∈ S∗λ,b

}
,

where l̂∗b (θ, {rj}j∈Sλ
) =

∑
j∈Sλ

w∗
jb l̂j (θ, {rj}j∈Sλ

).

Select the final estimated set of Valid IVs V̂∗
b by GBIC,

Derive the causal estimator for the b-th bootstrap

θ̂b = A−1
b

∑
j∈V̂b

β̂Yj
β̂Xj ,RB

σ2
Yj

, Ab =
∑
j∈V̂b

β̂2
Xj ,RB

− σ̂2
Xj ,RB

σ2
Yj

.

end

Obtain the final estimator by bootstrap aggregation θ̃ = 1
B

∑B
b=1 θ̂b,

Adopt the non-parametric delta method to estimate the variance of the bagged estimator with

σ̂2
n =

∑
j∈Sλ

Ŝ2
j , Ŝj =

1
B

∑B
b=1

(
w∗

ib − 1
B

∑B
k=1 w

∗
ik

)
(θ̂b − θ̃),

Construct a (1− α)-level confidence interval for θ with
[
θ̃ − zα

2
· σ̂n, θ̃ + zα

2
· σ̂n

]
, here zα

2
is the

upper α/2-quantile of the standard normal distribution.

Assumption 2 (Variance stabilization) There exists a variance stabilizing quantity aλ and a

vector τ ∈ Rsλ in which each component is independent of {(uj , νj)}j∈Sλ and uniformly bounded

away from infinity in probability in the sense that

sup
j∈Sλ

∣∣∣aλ · E∗
[
A−1
b · ŵjb

]
− τj

∣∣∣ = op(1),

where Ab =
∑

k∈Sλ ŵkb · (β̂
2
Xk,RB

− σ̂2
Xk,RB

)/σ2
Yk
, and ŵjb = w∗

jb · I(r̂jb = 0) · I(w∗
jb ≥ 1). In addition,
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there is no dominating IV in the sense that
maxj∈Sλ β

2
Xj∑

j∈Sλ
β2
Xj

p→ 0.

The first part of the above assumption, intuitively, ensures that our estimator θ̃ converges to

a non-degenerative distribution asymptotically when appropriately scaled by aλ/
√
sλ · κλ. This

scaling factor accounts for the number of selected instruments and their average strength, enabling

valid statistical inference. The second part of the condition requires that, after selection, no single

IV exerts a “dominating effect” on exposure, which aligns with the biological understanding that

complex traits are influenced by many genetic variants with small effects (i.e., the omnigenic model

[5]). To cast more insight into Assumption 2, in Section S.4.3 of the Supplemental Material,

we consider a special case where perfect IV screening is achieved. We show that in this case,

Assumption 2 holds for both valid and invalid IVs in Sλ.

Assumption 3 (Negligible invalid IV induced bias) There is negligible bias induced by po-

tential imperfect screening of invalid IVs after bootstrap aggregation in the sense that

aλ√
sλ · κλ

E∗[A−1
b

∑
j∈Sλ

β̂Xj,RB · rj · ŵjb/σ2
Yj

]
= op(1).

Our theoretical investigations reveal two sets of sufficient conditions under which Assumption 3

holds (See Section S.5 and S.6 in the Supplemental Material). The first set of sufficient conditions

ensures that the selected IVs are “nearly perfect,” meaning they are valid but do not include all

possible valid IVs. We show that this nearly perfect IV screening property can be satisfied when

there is strong prior knowledge about the trait’s genetic architecture or where valid and invalid IVs

are easily distinguishable. The second set of sufficient conditions ensures Assumption 3 holds even

if our proposed IV screening procedure does not screen all invalid IVs. In particular, our analysis

indicates that when IVs with large rj values (strong pleiotropic effects) are effectively screened out,

our estimator maintains consistency even if the selected set includes some invalid IVs with small

rj values (weak pleiotropic effects). Together, these theoretical investigations suggest that perfect

IV screening is not a prerequisite for valid inference in our proposed method.

Assumption 4 (Instrument Selection) Define η = min1≤j≤p ηj and η = max1≤j≤p ηj, then

both η and η are bounded and bounded away from zero.

The above assumption requires that the parameter η should not be too small or too large, as it
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impacts the concentration behavior and asymptotic normality of our estimator. This assumption

can be satisfied by design in our method. We recommend using a default value of ηj = 0.5 for

all j (where 1 ≤ j ≤ p), which ensures that both η and η are bounded and bounded away from

zero. This choice simplifies the implementation while maintaining the theoretical guarantees of our

method. Our simulation study also suggests that our method is not sensitive to the choice of η.

We are now in a position to describe the asymptotic behavior of our bootstrap aggregated

estimator. Without loss of generality, we consider a particular form of our estimator in an ideal

case where θ̃ = E∗[θ̂b].

Theorem 1 Under Assumptions S1-4, as sλ
p→∞ and κλ

λ2
p→∞, our proposed estimator satisfies

the following representation

aλ√
sλ · κλ

·
(
θ̃ − θ

)
=

1
√
sλ · κλ

∑
j∈Sλ

τj · ũj + op(1).

where ũj = β̂Xj,RB
(
θ · βXj + νj

)
− θ
(
β̂2
Xj,RB

− σ̂2
Xj,RB

)
. Therefore, conditional on the selection event

Sλ, our estimator converges to a Gaussian distribution, that is

σ̃−1
(
θ̃ − θ

)
; N(0, 1), where σ̃2 =

∑
j∈Sλ τ

2
j V
[
ũj |Sλ

]
a2λ

.

In the theorem above, we consider the asymptotic regime in which both sλ
p→∞ and κλ

λ2
p→∞

tend towards infinity. This asymptotic regime is quite natural in the context of MR. On the one

hand, sλ
p→∞ requires the number of IVs selected through re-randomization to be large enough, so

that our inverse variance weighting-based estimator exhibits concentrated behavior. On the other

hand, the condition κλ
λ2

p→∞ does not involve the bootstrapping procedure; instead, it pertains to

the strength of the selected IVs relative to the threshold λ used in the re-randomization step (Step

1). This assumption ensures that, on average, the selected IVs are sufficiently strong compared

to the threshold, thereby satisfying the relevance assumption. It is also likely to hold, as it is of

the same order as the GWAS sample size n after IV selection through re-randomization. From

a theoretical standpoint, both conditions have been rigorously verified in [33] under appropriate

conditions.
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5 Simulations studies

We generate different simulation settings to evaluate the methods performance. To save space, the

simulation settings are put into Supplementary Section S.8.1. Figure 2 summarizes the performance

of various MR methods under the setting of 50% of the IVs are invalid, which we discuss below.

First, both cML (Type 1 error rate: 0.136) and MR-Lasso (0.112) produce inflated Type 1 error

rates. This is because cML and MR-Lasso ignore the randomness in the valid IV selection procedure

and assume all invalid IVs have been screened out, which is not the case under this simulation

setting. In contrast, cML-DP (0.042) and CARE (0.042), which explicitly consider the randomness

in valid IV selection, yield well-calibrated Type 1 error rates. Furthermore, other benchmark

methods, including (random effects) IVW (0.056), MR-Egger (0.050), MRmix (0.020), MR-Median

(0.032), MR-mode (0.004), MR-APSS (0.054) and RAPS (0.038) also yield well-controlled Type 1

error rates, though MRmix, MR-Median, MR-mode, and RAPS yield slightly conservative Type

1 error rates. Notably, the winner’s curse bias itself does not cause an inflated Type 1 error rate

issue [33], partially explaining the robust performance of many MR methods under the null.

Second, CARE achieves considerably higher statistical power than benchmark methods (Fig-

ure 2a). Notably, CARE corrects the winner’s curse bias and measurement error bias, which allows

for a more liberal threshold (say, p < 5× 10−5) for instrument selection, resulting in higher power

than other methods that typically use the genome-wide significance level (p < 5 × 10−8) as the

threshold. Even though MR-APSS, like CARE, allows a liberal threshold (p < 5× 10−5) due to its

direct winner’s curse bias correction without theoretical guarantee, CARE outperforms MR-APSS,

because of its full correction of the winner’s curse bias and meticulous consideration of measurement

errors and invalid IVs.

Third, CARE yields smaller absolute bias compared to benchmark methods, attributable to

its comprehensive approach to simultaneously addressing multiple sources of bias (measurement

error bias, pleiotropic effects, and winner’s curse bias). In comparison, benchmark methods focus

on addressing some biases specifically, leading to biased results. For instance, while MR-APSS

directly corrects for the winner’s curse bias and considers potential invalid IVs, it still presents a

larger absolute bias compared to CARE, possibly due to its more limited scope in bias correction and

incomplete correction of the winner’s curse bias. However, while CARE significantly reduces bias,
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its estimates are not entirely bias-free. This residual bias likely stems from the subtle differences

between valid and invalid IVs. Consequently, the estimates are inevitably influenced by some

invalid IVs, albeit to a lesser extent than in other methods. Furthermore, we confirm that ignoring

the winner’s curse bias and directly applying the measurement error model with β̂Xj in CARE

generally results in worse performance, particularly concerning the absolute bias (Supplementary

Figure S1). As expected, CARE yields much smaller MSE compared to benchmark methods as

CARE has higher power and smaller absolute bias than any benchmark methods.

Fourth, the confidence intervals provided by CARE have coverage probabilities close to the

nominal 95% level. When the absolute causal effect |θ| is large (say, 0.1), the absolute bias is

relatively large, resulting in slight undercoverage of the true causal effect.

We conduct several additional simulations, including varying proportions of invalid IVs (Supple-

mentary Section S.8.2), uniform-distributed effects in correlated pleiotropy (Supplementary Section

S.8.3), balanced horizontal pleiotropy with InSIDE assumption satisfied (Supplementary Section

S.8.4) and directional pleiotropy with InSIDE assumption violated (Supplementary Section S.8.5).

The results patterns are similar.

Furthermore, to validate the results are not sensitive to the specific value of η within a reasonable

range, we conducted sensitivity analyses using different values of η (0.1, 0.3, 0.5, 0.7, 0.9) in our main

setting. The results demonstrate that the performance of our method remains stable and consistent

for η values between 0.3 and 0.9 (Section S.8.6 in Supplementary Material). As expected, a very

small η (0.1) led to worse results, likely due to insufficient rerandomization to fully account for

the winner’s curse bias. Based on these findings, we recommend that practitioners use the default

value of η = 0.5 in most cases without the need for dataset-specific fine-tuning.

While CARE demonstrates robust performance across various scenarios, it is important to note

its limitations. As one reviewer suggested, we consider a simulation scenario that the parameter

assumptions of other methods are true (where a three-sample MR design is used and the first

GWAS is reserved solely for IV selection based on association strength so that the normality of

β̂Xj is not distorted). In this case, some alternative robust MR methods may outperform CARE,

indicating that other robust MR methods may outperform CARE in a three-sample MR desgin

(Supplementary Section S.8.13). Further simulations revealed two situations CARE is suboptimal.

Firstly, in settings with non-linear relationships between genetic variants and exposures, CARE
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showed slightly inflated Type 1 error rates, larger bias, and worse coverage (Section S.8.8 in Sup-

plementary Material). This limitation stems from the method’s underlying assumption of linear

relationships, which is common in MR studies and often justified by the predominantly linear

or additive nature of genetic effects on complex traits [51]. Unlike our current approach, which

exclusively utilizes GWAS summary data to estimate causal effects, recent advancements have ad-

dressed the non-linearity issue through methods like DeepMR [34], a deep learning-based approach

applicable when individual-level DNA sequence data are available. Secondly, CARE’s performance

may be compromised when the sample size of the exposure GWAS is small, resulting in a limited

number of selected candidate IVs (Section S.8.9 in Supplementary Material). This issue may also

arise due to a relatively small number of independent IVs (Section S.8.10 in Supplementary Mate-

rial). Such scenarios can lead to increased sensitivity to violations of IV assumptions and challenge

our asymptotic normality results, which require the number of candidate IVs to approach infinity.

Users should exercise caution when applying CARE and other MR methods in these scenarios and

consider alternative methods or larger sample sizes when possible.

In the end, it is worth mentioning that the core algorithm in CARE is written in C++ using

the R package RcppArmadillo, and each step within the algorithm has a closed-form solution.

Consequently, CARE has similar computational efficiency to many other methods, such as cML-

DP and MRmix (Supplementary Figure S4), despite utilizing a larger number of IVs and a relatively

high number of bootstrap iterations (2,000). Under the main simulation setting (12,000 simulations

across 30%, 50%, and 70% invalid IVs), the average computational time of CARE is 12.6 seconds.

Notably, the computational time for all methods is less than a minute in most situations when using

one single core in a server. Thus, computational time should not be the primary consideration when

deciding the method to be used.

6 Case studies

In this section, we investigate the performance of proposed CARE in two case studies. We put the

data harmonization details in Supplementary Section S.9.1.
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6.1 Negative control outcomes

To evaluate the Type 1 error rates in real data, we employ negative control outcome analyses,

applying CARE and benchmark methods to investigate the causal effect of exposures on outcomes

known a priori to have no causal relationship with the exposures. Briefly, in these negative control

outcome analyses, the causal effect size is expected to be θ = 0 [44] because negative control

outcomes are determined prior to the exposures. However, unmeasured confounding factors may

affect the estimates of θ. In particular, following others [44], we use ease of skin tanning to sun

exposures and natural hair color before greying (six outcomes: Ease of skin tanning, Hair color

black, Hair color red, Hair color blonde, Hair color light brown, and Hair color dark brown) as

negative control outcomes. These data were downloaded from the IEU OpenGWAS Project [32]

with GWAS ID: ukb-b-533 and ukb-d-1747. Notably, both tanning ability and natural hair color

before greying are primarily determined at birth (thus, prior to considered exposures) but could

be affected by unmeasured confounders [44]. In this setting, the inclusion of invalid IVs due to

widespread pleiotropic effects or unmeasured confounding factors (e.g., population stratification)

may result in incorrect rejections of the null hypothesis (θ = 0) for MR analyses, leading to inflated

Type 1 error rates.

Figure 2: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the main setting with 50% invalid IVs. Power is the empirical
power estimated by the proportion of p-values less than the significance threshold of 0.05. Coverage
is the empirical coverage probability of the 95% confidence interval.
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We consider 45 exposures, which include HDL cholesterol, body mass index (BMI), height,

Alzheimer’s disease, Lung cancer, Type 2 diabetes, stroke, asthma, and many others. All GWAS

data are downloaded from the IEU OpenGWAS Project [32], and details of each exposure are rel-

egated to the Supplementary Table 1. These exposures were selected based on their prevalence

in existing literature and relevance to public health. Specifically, traits such as BMI, height, and

HDL cholesterol have been extensively studied in genetic epidemiology and are known to be asso-

ciated with various health outcomes. Disease outcomes like Alzheimer’s disease, Type 2 diabetes,

and cardiovascular diseases represent major public health concerns and have been the focus of

numerous Mendelian randomization studies. This diverse set of exposures covers a wide range of

physiological and pathological processes, allowing us to evaluate CARE’s performance across var-

ious scenarios commonly encountered in Mendelian randomization studies. We apply CARE and

benchmark methods to infer causal effects between these 45 exposures and six negative control

outcomes (tanning ability and natural hair color before greying), resulting in 270 trait pairs. The

corresponding p-values should follow a standard uniform distribution, given that the causal effect

size θ = 0 under the negative control outcomes analysis.

Figure 3: QQ plots of p-values in negative
control outcome analysis. The gray-shaded
part is 95% confidence interval.

Figure 4: Number of significant causal
pairs identified by different methods
under Bonferroni-correction threshold
< 0.05/45 ≃ 10−3 using (A) 45 exposures
used in negative control analysis and (B)
24 exposures that are reported by CDC
and existing literature.

Figure 3 summarizes the QQ-plots of − log10(p) values for different methods. First, CARE

yields well-calibrated p-values, indicating its reliability in controlling type 1 error rates under this

negative control outcome analysis (Figure 3A). Similarly, IVW, cML-DP and MR-APSS also achieve

good performance (Figure 3B). In contrast, MR-mix, MR-Egger, RAPS, ContMix, cML, Weighted-
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Median, Weighted-Mode, and MR-Lasso yield inflated p-values (Figures 3C and 3D). One may

be surprised that widely used IVW achieves good performance. This is because we make every

effort to make a fair comparison between different methods and use the (random effects) IVW to

consider pleiotropic effects (i.e., invalid IVs) by allowing over-dispersion in the regression model.

As expected, the fixed effects IVW that assumes all used IVs are valid leads to inflated p-values

(Supplementary Figure S34A).

To understand why CARE performs well, we highlight two aspects. First, selecting valid IVs

can be noisy in real data applications. That explains why cML and MR-Lasso, methods that

ignore the screening variability in IV selection, produce inflated p-values (Figure 3D). Applying

bagging reduces the screening variability and thus helps achieve well-calibrated p-values in CARE.

Similarly, as cML-DP uses a data perturbation method to account for the screening variability, it

also achieves relatively good performance. Second, CARE adopts a rerandomization step to select

candidate IVs, accounting for the impact of the winner’s curse bias. Breaking the winner’s curse

bias helps CARE achieve well-calibrated p-values as CARE uses a measurement error model and

relies on the unbiasedness estimation of exposure-SNP effect βXj . This rerandomization step is

crucial for CARE, and we confirm that applying CARE without the rerandomization step leads to

inflated p-values (Supplementary Figure S34B).

6.2 Risk factors identification for COVID-19 severity

To better understand the underlying causal risk factors for COVID-19 severity and demonstrate

the performance of our proposed method CARE, we apply CARE and competing MR methods

to systematically identify causal risk factors for COVID-19 severity. Specifically, we investigate

the same 45 exposures used in the negative control outcome analysis and use COVID-19 severity

(B2) from the covid-19hg (B2, version v7, European ancestry only; [27]) as our outcome data.

The dataset includes data from 32,519 hospitalized COVID-19 patients and 2,062,805 population

controls.

First, we compare the number of significant causal exposures identified by CARE and competing

methods under the Bonferroni correction (< 0.05/45 ≃ 10−3) (Figure 4A). CARE identifies 6 causal

exposures. In comparison, the competing methods RAPS, cML-DP, IVW, MR-Lasso, MR-APSS,

MR-mix, ContMix, Weighted-Median, Weighted-Mode, MR-Egger identify 7, 5, 5, 5, 4, 4, 3, 0, 0
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and 0 causal exposures, respectively. In terms of statistical power, CARE ranks second among all

MR methods considered. RAPS achieves the highest power but also yields inflated p-values in our

negative control outcome analysis and simulations, primarily due to neglecting variability in valid

IV selection step.

Second, we compared the risk factors identified by different MR methods to known factors that

meet two criteria: (1) they have been reported by the CDC or in peer-reviewed literature, and

(2) they overlap with the 45 exposures used in our negative control outcome analyses. Through

a comprehensive manual review by two researchers, we identified 24 well-established risk factors

for COVID-19 severity (Supplementary Table 1). Notably, our new method, CARE, demonstrated

superior performance by correctly identifying six of these 24 known risk factors: BMI, extreme

BMI, HDL cholesterol, obesity class 1, obesity class 2, and overweight. In comparison, benchmark

methods showed lower detection rates: MR-LASSO identified 5 risk factors, while cML-DP, IVW,

MR-APSS, MR-Mix, and RAPS each identified 4. ContMix detected 3, and Median identified 2.

Both Weighted-Mode and MR-Egger failed to identify any risk factors (Figure 4B). Importantly,

CARE also avoided false positives, i.e., it did not incorrectly identify any factors lacking strong

supporting evidence in the literature. In contrast, several benchmark methods produced potential

false positives. For example, cML-DP incorrectly identified childhood obesity as a risk factor, while

IVW erroneously identified both celiac disease and childhood obesity. Finally, when we focus on

four methods with relatively good performance under our negative control outcome analysis, the

result patterns are similar (Supplementary Section S.9.2).

In summary, CARE achieves high power in identifying likely causal risk factors for COVID-19

severity, and the identified risk factors can be largely validated by complementary analyses and

literature.

7 Conclusion

We introduced a unified two-sample Mendelian randomization within the summary data framework,

referred to as Causal Analysis with Randomized Estimators (CARE), that accounts for winner’s

curse, measurement error bias, and genetic pleiotropy simultaneously. Through simulations and

biomedical applications, we demonstrate that CARE delivers robust causal effect estimates with
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improved statistical power. More importantly, the CARE estimator enjoys rigorous theoretical

guarantees under mild assumptions, which is often lacking for competing methods.
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Palmer, T., Schooling, C. M., Wallace, C., Zhao, Q., et al. (2022). Mendelian randomization.

Nature Reviews Methods Primers, 2(1):6.

[44] Sanderson, E., Richardson, T. G., Hemani, G., and Davey Smith, G. (2021). The use of nega-

tive control outcomes in Mendelian randomization to detect potential population stratification.

International Journal of Epidemiology, 50(4):1350–1361.

[45] Skrivankova, V. W., Richmond, R. C., Woolf, B. A., Davies, N. M., Swanson, S. A., Van-

derWeele, T. J., Timpson, N. J., Higgins, J. P., Dimou, N., Langenberg, C., et al. (2021).

Strengthening the reporting of observational studies in epidemiology using Mendelian randomi-

sation (STROBE-MR): Explanation and elaboration. BMJ, 375.

[46] Smith, G. D. and Ebrahim, S. (2004). Mendelian randomization: prospects, potentials, and

limitations. International Journal of Epidemiology, 33(1):30–42.

[47] Stephens, M. (2017). False discovery rates: a new deal. Biostatistics, 18(2):275–294.

[48] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288.

29



[49] Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable

minimization. Journal of Optimization Theory and Applications, 109(3):475–494.

[50] Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A. N., Knowles, D. A., Golan,

D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K., et al. (2019). Opportunities and

challenges for transcriptome-wide association studies. Nature genetics, 51(4):592–599.

[51] Wainschtein, P., Jain, D., Zheng, Z., Cupples, L. A., Shadyab, A. H., McKnight, B., Shoe-

maker, B. M., Mitchell, B. D., et al. (2022). Assessing the contribution of rare variants to complex

trait heritability from whole-genome sequence data. Nature Genetics, 54(3):263–273.

[52] Watanabe, K., Stringer, S., Frei, O., Mirkov, M. U., de Leeuw, C., Polderman, T. J., van der

Sluis, S., Andreassen, O. A., Neale, B. M., and Posthuma, D. (2019). A global overview of

pleiotropy and genetic architecture in complex traits. Nature Genetics, 51(9):1339–1348.

[53] Xue, H., Shen, X., and Pan, W. (2021). Constrained maximum likelihood-based mendelian

randomization robust to both correlated and uncorrelated pleiotropic effects. The American

Journal of Human Genetics, 108(7):1251–1269.

[54] Ye, T., Shao, J., and Kang, H. (2021). Debiased inverse-variance weighted estimator in two-

sample summary-data mendelian randomization. The Annals of Statistics, 49(4):2079–2100.

[55] Zeng, J., De Vlaming, R., Wu, Y., Robinson, M. R., Lloyd-Jones, L. R., Yengo, L., Yap, C. X.,

Xue, A., Sidorenko, J., McRae, A. F., et al. (2018). Signatures of negative selection in the genetic

architecture of human complex traits. Nature Genetics, 50(5):746–753.

[56] Zhao, Q., Wang, J., Hemani, G., Bowden, J., and Small, D. S. (2020). Statistical inference

in two-sample summary-data mendelian randomization using robust adjusted profile score. The

Annals of Statistics, 48(3):1742–1769.

[57] Zhong, H. and Prentice, R. L. (2010). Correcting “winner’s curse” in odds ratios from

genomewide association findings for major complex human diseases. Genetic Epidemiology,

34(1):78–91.
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S.1 Algorithm to solve the optimization problem in (4)

S.1.1 Algorithm to solve the optimization problem in (4)

In the section, we provide an algorithm borrowing ideas from coordinate descent [49] to solve the

optimization problem in (4), that is

min
θ∈R,rj∈R

{
l̂
(
θ, {rj}j∈Sλ

)
:
∑
j∈Sλ

1(rj = 0) = v
}
⇒ V̂(v) =

{
j : r̂j = 0, j ∈ Sλ

}
,

This step allows us to screen out invalid IVs and select V.

3



We note that the proposed algorithm borrows strength from the classical coordinate descent al-

gorithm by iteratively minimizing the objective function by fixing either θ or rj ’s. As our algorithm

aims to screen out invalid IVs with rj ̸= 0, one difference is that we iteratively search for IVs with

large “residuals” (i.e., β̂Y j − θβ̂Xj ,RB) in Step 2. (i) so that the objective function can be further

minimized. Furthermore, as our optimization problem involves l0 penalty, instead of choosing the

model size v based on cross-validation frequently adopted in Lasso-type problems [48, 59], we adopt

the Bayesian Information Criterion to select the final set of valid IVs.

Our proposed algorithm consists of three steps as follows:

4



Algorithm 3: Algorithm to solve the optimization problem in (4)

Input: Data inputs and initial parameters

Output: Estimated parameters θ̂ and r̂j

Initialization Set k = 0, generate θ(0) ∼ Uniform

(
min1≤j≤sλ

β̂Yj

β̂Xj
,max1≤j≤sλ

β̂Yj

β̂Xj

)
;

Block Coordinate Descent

repeat

Fix θ(k), update r
(k+1)
j ;

Order

(
β̂Yj−θ

(k)·β̂Xj,RB
)2

σ2
Yj

−
θ2·σ̂2

Xj,RB

σ2
Yj

, j = 1, 2, . . . , sλ − v in decreasing order;

Set r
(k+1)
j = β̂Yj − θ(k)β̂Xj ,RB for the largest sλ − v components, j = 1, . . . , sλ − v,

and r
(k+1)
j = 0 for j = sλ − v + 1, . . . , sλ;

Fix r
(k+1)
j , update θ(k) by minimizing the following objective function:

θ(k+1) = argmin
θ∈R

∑
j∈Sλ

(
β̂Yj − θ · β̂Xj ,RB − r

(k+1)
j

)2
− θ2 · σ̂2

Xj ,RB

σ2
Yj

1
(r

(k+1)
j =0)

.

If
∣∣∣ θ(k+1)−θ(k)

θ(k)

∣∣∣ < 10−7 then Stop and output θ̂(v) = θ(k+1) and r̂j(v) = r
(k+1)
j ;

else Set k = k + 1;

until
∣∣∣ θ(k+1)−θ(k)

θ(k)

∣∣∣ < 10−7;

end

Valid IV Selection via BIC

for v = 2, . . . , sλ do

Calculate

BIC(v) = −2l̂
(
θ̂(v), {r̂j(v)}j∈V̂

)
+ log(n) · (sλ − v);

end

Select V̂ with the smallest BIC(v);

end
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S.1.2 Justification of unique solution of Problem (4) under fixed θ

To cast some insights into the proposed Algorithm 3 for solving Problem (3), we note that in each

iteration, our algorithm breaks the optimization into two sub-problems and provides a closed-form

global optimal solution for these sub-problems.

In the first sub-problem, we fix θ and treat Problem (3) as an optimization problem with respect

to {rj}j∈S :

min
θ,rj

l
(
θ, {rj}j∈S

)
, s.t.

∑
j∈S

1(rj=0) = v.

Unlike classical l0 constrained linear regression with an arbitrary design matrix, solving this problem

is computationally efficient as we can decompose the original loss function into the sum of lj(θ, rj).

Each lj(θ, rj) only depends on a single rj . In this case, a closed-form solution to this optimization

problem can be given.

As we can see that, for invalid IVs with rj ̸= 0, lj
(
θ, rj

)
reaches its minimum 0 by setting

rj = β̂Yj − θ · β̂Xj (See justifications below). While for valid IVs with rj = 0, lj
(
θ, rj

)
takes a

constant value of 1
2(β̂Yj − θ · β̂Xj )2/σ2

Yj
− 1

2θ
2 · σ2

Xj
/σ2

Yj
.

Therefore, to minimize the the loss function l
(
θ, {rj}j∈S

)
for given θ, we only need to find

v IVs with the smallest 1
2(β̂Yj − θ · β̂Xj )2/σ2

Yj
− 1

2θ
2 · σ2

Xj
/σ2

Yj
and set their rj = 0 and the rest

of rj to β̂Yj − θ · β̂Xj . The Block Coordinate Descent Step of our algorithm is indeed providing

such a closed-form global optimal solution of the above combinatorial optimization problem. After

deriving {rj}j∈S , we then solve our second sub-problem by solving Problem (3) with {rj}j∈S fixed.

The alternative minimization of θ and {rj}j∈S together can ensure the objective function decay.

To justify any given θ, we can give a closed-form solution of the optimization problem

min
{rj}j∈Sλ

l
(
θ, {rj}j∈Sλ

)
s.t.

∑
j∈Sλ

1rj=0 = v,

we further investigate lj
(
θ, rj

)
and discuss the solution to this optimization problem in three dif-

ferent situations.

∂l
(
θ, {rj}j∈Sλ

)
∂rj

=
∂lj
(
θ, rj

)
∂rj

= −
β̂Yj − θ · β̂Xj ,RB − rj

σ2
Yj

When rj ̸= 0.
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lj
(
θ, rj

)
≜

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

When rj = 0.

• In the case that β̂Yj − θ · β̂Xj ,RB > 0, we have lj
(
θ, rj

)
reach its local minimum 0 when

rj = β̂Yj − θ · β̂Xj ,RB > 0.

When rj = 0,

lj
(
θ, rj

)
=

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

And when rj < 0, we have
∂l
(
θ,{rj}j∈Sλ

)
∂rj

=
∂lj

(
θ,rj

)
∂rj

< 0, and therefore

lj
(
θ, rj

)
≥ lim

rj→0−

1

2

(β̂Yj − θ · β̂Xj ,RB − rj)
2

σ2
Yj

> 0.

Therefore we have

min
rj ̸=0

lj
(
θ, rj

)
= 0 and lj

(
θ, rj = 0

)
=

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

.

• In the case that β̂Yj − θ · β̂Xj ,RB < 0, we have lj
(
θ, rj

)
reach its local minimum 0 when

rj = β̂Yj − θ · β̂Xj ,RB < 0.

When rj = 0,

lj
(
θ, rj

)
=

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

And when rj > 0, we have
∂l
(
θ,{rj}j∈Sλ

)
∂rj

=
∂lj

(
θ,rj

)
∂rj

> 0, and therefore

lj
(
θ, rj

)
≥ lim

rj→0+

1

2

(β̂Yj − θ · β̂Xj ,RB − rj)
2

σ2
Yj

> 0.

Therefore we have

min
rj ̸=0

lj
(
θ, rj

)
= 0 and lj

(
θ, rj = 0

)
=

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

.
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• In the case when β̂Yj − θ · β̂Xj ,RB = 0.

When rj > 0, we have
∂l
(
θ,{rj}j∈Sλ

)
∂rj

=
∂lj

(
θ,rj

)
∂rj

≥ 0, and therefore

lj
(
θ, rj

)
≥ lim

rj→0+

1

2

(β̂Yj − θ · β̂Xj ,RB − rj)
2

σ2
Yj

≥ 0.

When rj < 0, we have
∂l
(
θ,{rj}j∈Sλ

)
∂rj

=
∂lj

(
θ,rj

)
∂rj

< 0, and therefore

lj
(
θ, rj

)
≥ lim

rj→0−

1

2

(β̂Yj − θ · β̂Xj ,RB − rj)
2

σ2
Yj

≥ 0.

When rj = 0, we have

lj
(
θ, rj

)
= −1

2

θ2 · σ2
Xj ,RB

σ2
Yj

.

Therefore we have

min
rj ̸=0

lj
(
θ, rj

)
= 0 and lj

(
θ, rj = 0

)
=

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

.

S.1.3 Adoption of l0 penalty instead of using Lasso

We adopted the l0 penalty for three reasons:

• Unlike the classical l0 constrained linear regression, our considered l0 constrained optimization

problem is computationally efficient to solve as closed form solutions of {rj}j∈Sλ can be derived

when θ is fixed (See previous discussions in Section 1.2).

• Due to the inclusion of a measurement error bias correction term, 1
2

∑
j∈Sλ

θ2·σ2
Xj,RB

σ2
Yj

I(rj = 0),

in our objective function, adopting a Lasso-type penalty results in an optimization problem

with non-differentiable gradients, making the algorithm remains time-consuming to solve.

• Empirically, we have actually tested the use of the l1 penalty, which was our original idea.

There, to enable efficient optimization, we removed the bias correction term for the measure-

ment error. Our preliminary investigations with the l1 penalty revealed several limitations: i)

The number of selected IVs exhibited high sensitivity to small changes in the tuning param-

eter λ. ii) The l1 penalty’s simultaneous penalization of valid and invalid IVs is suboptimal,
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given the often subtle differences between these IVs in MR contexts. iii) The convex nature

of the l1 penalty resulted in discontinuous jumps in the number of selected IVs as λ varied,

leading to suboptimal performance. In contrast, the l0 penalty offers several advantages in

our specific context: i) It provides a comprehensive set of potential solutions across varying

numbers of potential (valid) IVs. ii) It better accommodates the nuanced differences between

valid and invalid IVs typically encountered in MR studies.

These considerations collectively support the use of the l0 penalty as a more suitable approach

for our specific optimization problem in the MR framework.
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S.2 Algorithm to solve the optimization problem using l1 penalty

• The first approach: We replace the l0 constraint with an l1 penalty in the following objective

function:

l̂
(
θ, {rj}j∈S , γ

)
≜
∑
j∈S

lj
(
θ, rj

)

lj
(
θ, rj , γ

)
=

1

2

(β̂Yj − θ · β̂Xj − rj)
2

σ2
Yj

− 1

2

θ2 · σ2
Xj,RB

σ2
Yj

1(rj=0) + γ|rj |.

For a fixed tuning parameter γ, we estimate the parameters by minimizing:

min
θ∈R,rj∈R

l̂
(
θ, {rj}j∈S , γ

)
.

To solve this optimization problem, we alternate between minimizing with respect to θ and

{rj}j∈S . The optimal solution for {rj}j∈S given a fixed θ is:

rj =

sign(β̂Yj
− θ · β̂Xj ,RB) ·

(
|β̂Yj
− θ · β̂Xj ,RB| − γ · σ2

Yj

)
if |β̂Yj

− θ · β̂Xj ,RB| > γ · σ2
Yj

+ |θ| · σXj ,RB,

0 otherwise.

Theoretical justifications for this result can be found in the Supplemental Material Section

S.3. The optimal solution for θ, given fixed {rj}j∈S , is:

argmin
θ∈R

∑
j∈S

(
β̂Yj − θ · β̂Xj ,RB − rj

)2
− θ2 · σ̂2

Xj ,RB

σ2
Yj

1(rj=0).

We iteratively update θ and {rj}j∈S until convergence. The tuning parameter γ is selected

via BIC, and the corresponding estimator θ̂(γ) is used for inference. The full optimization

procedure is detailed in Algorithm 4.

• The second approach: We further replace 1(rj=0) in the measurement error term with

1− |rj | and derive the following objective function,

l
(
θ, {rj}j∈S

)
≜
∑
j∈S

lj
(
θ, rj

)
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lj
(
θ, rj

)
=

1

2

(β̂Yj − θ · β̂Xj − rj)
2

σ2
Yj

− 1

2

θ2 · σ2
Xj

σ2
Yj

+ (γ +
1

2

θ2 · σ2
Xj

σ2
Yj

)|rj |.

For a fixed tuning parameter γ, we also estimate the parameters by minimizing:

min
θ∈R,rj∈R

l̂
(
θ, {rj}j∈S , γ

)
.

To solve this optimization problem, we alternate between minimizing with respect to θ and

{rj}j∈S . The optimal solution for {rj}j∈S given a fixed θ is:

rj =


sign(β̂Yj − θ · β̂Xj ,RB) ·

(
|β̂Yj − θ · β̂Xj ,RB| − λ̃j · σ2

Yj

)
if |β̂Yj − θ · β̂Xj ,RB| > λ̃j · σ2

Yj
,

0 otherwise.

where λ̃j = γ+ 1
2

θ2·σ2
Xj

σ2
Yj

for all j ∈ S. Theoretical justifications for this result can be found in

the Supplemental Material Section S.3. The optimal solution for θ, given fixed {rj}j∈S , is:

argmin
θ∈R

1

2

∑
j∈S

(β̂Yj − θ · β̂Xj − rj)
2

σ2
Yj

− 1

2

∑
j∈S

θ2 · σ2
Xj

σ2
Yj

+
∑
j∈S

(γ +
1

2

θ2 · σ2
Xj

σ2
Yj

)|rj |.

We also iteratively update θ and {rj}j∈S until convergence and use BIC to select the tuning

parameter γ. The corresponding estimator θ̂(γ) is used for inference. The full optimization

procedure is detailed in Algorithm 5.
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Algorithm 4: Algorithm to solve the optimization problem in (4)

Input: Data inputs and initial parameters

Output: Estimated parameters θ̂ and r̂j

Initialization Set k = 0, generate θ(0) ∼ Uniform

(
min1≤j≤sλ

β̂Yj

β̂Xj

,max1≤j≤sλ

β̂Yj

β̂Xj

)
;

Block Coordinate Descent

repeat

Fix θ(k), update r
(k+1)
j :

For ∀j ∈ S: If |β̂Yj
− θ(k) · β̂Xj ,RB| > γ · σ2

Yj
+ |θ(k)| · σXj ,RB, we let

r
(k+1)
j = sign(β̂Yj − θ(k) · β̂Xj ,RB) ·

(
|β̂Yj − θ(k) · β̂Xj ,RB| − γ · σ2

Yj

)
.

Otherwise, we set r
(k+1)
j = 0.

Fix r
(k+1)
j , update θ(k) by minimizing the following objective function:

θ(k+1) = argmin
θ∈R

∑
j∈Sλ

(
β̂Yj − θ · β̂Xj ,RB − r

(k+1)
j

)2
− θ2 · σ̂2

Xj ,RB

σ2
Yj

1
(r

(k+1)
j =0)

.

θ(k+1) =

∑
j∈S

β̂Xj,RB
·β̂Yj

σ̂2
Xj,RB

1
(r

(k+1)
j =0)∑

j∈S
( β̂2

Xj,RB

σ2
Yj

−
σ̂2
Xj,RB

σ2
Yj

)
1
(r

(k+1)
j =0)

.

If
∣∣∣ θ(k+1)−θ(k)

θ(k)

∣∣∣ < 10−7 then Stop and output θ̂(γ) = θ(k+1) and r̂j(γ) = r
(k+1)
j ;

else Set k = k + 1;

until
∣∣∣ θ(k+1)−θ(k)

θ(k)

∣∣∣ < 10−7;

end

Valid IV Selection via BIC

for all candidate γ do

Calculate

BIC(γ) = −2l̂
(
θ̂(γ), {r̂j(γ)}j∈V̂γ

)
+ log(n) · (sλ − v̂γ);

end

Select V̂γ with the smallest BIC(γ);

end
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Algorithm 5: Algorithm to solve the optimization problem in (4)

Input: Data inputs and initial parameters

Output: Estimated parameters θ̂ and r̂j

Initialization Set k = 0, generate θ(0) ∼ Uniform

(
min1≤j≤sλ

β̂Yj

β̂Xj

,max1≤j≤sλ

β̂Yj

β̂Xj

)
;

Block Coordinate Descent

repeat

Fix θ(k), update r
(k+1)
j :

For ∀j ∈ S: If |β̂Yj
− θ(k) · β̂Xj ,RB| > λ̃j · σ2

Yj
, we let

r
(k+1)
j = sign(β̂Yj − θ(k) · β̂Xj ,RB) ·

(
|β̂Yj − θ(k) · β̂Xj ,RB| − λ̃j · σ2

Yj

)
where λ̃j = γ + 1

2

θ2·σ̂2
Xj,RB

σ2
Yj

.

Otherwise, we set r
(k+1)
j = 0.

Fix r
(k+1)
j , update θ(k) by minimizing the following objective function:

θ(k+1) = argmin
θ∈R

1

2

∑
j∈S

(β̂Yj − θ · β̂Xj − r
(k+1)
j )2

σ2
Yj

−1

2

∑
j∈S

θ2 · σ̂2
Xj ,RB

σ2
Yj

+
∑
j∈S

(γ+
1

2

θ2 · σ̂2
Xj ,RB

σ2
Yj

)|r(k+1)
j |.

θ(k+1) =

∑
j∈S

β̂Xj,RB
(β̂Yj

−r
(k+1)
j )

σ̂2
Xj,RB∑

j∈S
β̂2
Xj,RB

σ2
Yj

−
σ̂2
Xj,RB

σ2
Yj

· (1− |r(k+1)
j |)

.

If
∣∣∣ θ(k+1)−θ(k)

θ(k)

∣∣∣ < 10−7 then Stop and output θ̂(γ) = θ(k+1) and r̂j(γ) = r
(k+1)
j ;

else Set k = k + 1;

until
∣∣∣ θ(k+1)−θ(k)

θ(k)

∣∣∣ < 10−7;

end

Valid IV Selection via BIC

for all candidate γ do

Calculate

BIC(γ) = −2l̂
(
θ̂(γ), {r̂j(γ)}j∈V̂γ

)
+ log(n) · (sλ − v̂γ);

end

Select V̂γ with the smallest BIC(γ);

end
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S.3 Theorectical justifications for two l1 methods

S.3.1 Method 1

For a fixed tuning parameter γ, we estimate the parameters by minimizing:

min
θ∈R,rj∈R

l̂
(
θ, {rj}j∈S , γ

)
.

To solve this optimization problem, we alternate between minimizing with respect to θ and {rj}j∈S .

The optimal solution for {rj}j∈S given a fixed θ is:

rj =


sign(β̂Yj − θ · β̂Xj ,RB) ·

(
|β̂Yj − θ · β̂Xj ,RB| − γ · σ2

Yj

)
if |β̂Yj − θ · β̂Xj ,RB| > γ · σ2

Yj
+ |θ| · σXj ,RB,

0 otherwise.

To see this, we investigate lj
(
θ, rj

)
and discuss the solution of rj when fixed θ. We consider the

objective function:

l
(
θ, {rj}j∈S

)
=
∑
j∈S

lj
(
θ, rj

)
, lj

(
θ, rj

)
≜

1

2

(β̂Yj − θ · β̂Xj − rj)
2

σ2
Yj

− 1

2

θ2 · σ2
Xj

σ2
Yj

1(rj=0) + γ · |rj |.

and we have

∂lj
(
θ, rj

)
∂rj

= −
β̂Yj − θ · β̂Xj ,RB − rj

σ2
Yj

+ γ When rj > 0,

∂lj
(
θ, rj

)
∂rj

= −
β̂Yj − θ · β̂Xj ,RB − rj

σ2
Yj

− γ When rj < 0,

lj
(
θ, rj

)
≜

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

When rj = 0,

and consider three different scenarios:

• In the case that β̂Yj − θ · β̂Xj ,RB > γ · σ2
Yj
,

when rj < 0, we have
∂lj

(
θ,rj

)
∂rj

< 0, and therefore

lj
(
θ, rj

)
≥ lim

rj→0−

1

2

(β̂Yj − θ · β̂Xj ,RB − rj)
2

σ2
Yj

=
1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

.
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When rj = 0,

lj
(
θ, rj

)
=

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

.

When rj > 0, we have lj
(
θ, rj

)
reach its local minimum when rj = β̂Yj − θ · β̂Xj ,RB − γ · σ2

Yj
.

lj
(
θ, rj

)
=

1

2

γ2 · σ4
Yj

σ2
Yj

+ γ · (β̂Yj − θ · β̂Xj ,RB − γ · σ2
Yj ).

and

lj
(
θ, 0
)
− lj

(
θ, rj

)
=

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

− 1

2

γ2 · σ4
Yj

σ2
Yj

− γ · (β̂Yj − θ · β̂Xj ,RB − γ · σ2
Yj )

=
1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

+
1

2

γ2 · σ4
Yj

σ2
Yj

− γ · (β̂Yj − θ · β̂Xj ,RB)−
1

2

θ2 · σ2
Xj ,RB

σ2
Yj

=
1

2

(β̂Yj − θ · β̂Xj ,RB − γ · σ2
Yj
)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

.

Thus when β̂Yj − θ · β̂Xj ,RB − γ · σ2
Yj

> |θ| · σXj ,RB, lj
(
θ, rj

)
achieves the minimum when

rj = β̂Yj − θ · β̂Xj ,RB − γ · σ2
Yj .

Otherwise, lj
(
θ, rj

)
achieves the minimum when rj = 0.

• In the case that β̂Yj − θ · β̂Xj ,RB < −γ · σ2
Yj
,

when rj > 0, we have
∂lj

(
θ,rj

)
∂rj

> 0, and therefore

lj
(
θ, rj

)
≥ lim

rj→0+

1

2

(β̂Yj − θ · β̂Xj ,RB − rj)
2

σ2
Yj

=
1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

.

When rj = 0,

lj
(
θ, rj

)
=

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

.
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When rj < 0, we have lj
(
θ, rj

)
reach its local minimum when rj = β̂Yj − θ · β̂Xj ,RB + γ · σ2

Yj
.

lj
(
θ, rj

)
=

1

2

γ2 · σ4
Yj

σ2
Yj

− γ · (β̂Yj − θ · β̂Xj ,RB + γ · σ2
Yj ).

and

lj
(
θ, 0
)
− lj

(
θ, rj

)
=

1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

− 1

2

γ2 · σ4
Yj

σ2
Yj

+ γ · (β̂Yj − θ · β̂Xj ,RB + γ · σ2
Yj )

=
1

2

(β̂Yj − θ · β̂Xj ,RB)2

σ2
Yj

+
1

2

γ2 · σ4
Yj

σ2
Yj

+ γ · (β̂Yj − θ · β̂Xj ,RB)−
1

2

θ2 · σ2
Xj ,RB

σ2
Yj

=
1

2

(β̂Yj − θ · β̂Xj ,RB + γ · σ2
Yj
)2

σ2
Yj

− 1

2

θ2 · σ2
Xj ,RB

σ2
Yj

.

Thus when β̂Yj − θ · β̂Xj ,RB + γ · σ2
Yj

< −|θ| · σXj ,RB, lj
(
θ, rj

)
achieves the minimum when

rj = β̂Yj − θ · β̂Xj ,RB + γ · σ2
Yj .

Otherwise, lj
(
θ, rj

)
achieves the minimum when rj = 0.

• In the case that −γ · σ2
Yj
≤ β̂Yj − θ · β̂Xj ,RB ≤ γ · σ2

Yj
, lj
(
θ, rj

)
achieves the minimum when

rj = 0.
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S.3.2 Method 2

We consider the objective function

l
(
θ, {rj}j∈S

)
≜
∑
j∈S

lj
(
θ, rj

)
,

where each component loss is given by

lj
(
θ, rj

)
=

1

2

(β̂Yj − θ · β̂Xj − rj)
2

σ2
Yj

− 1

2

θ2 · σ2
Xj

σ2
Yj

+ (γ +
1

2

θ2 · σ2
Xj

σ2
Yj

)|rj |.

When θ is fixed, the optimization over rj reduces to minimizing:

l̃j
(
θ, rj

)
=

1

2

(β̂Yj − θ · β̂Xj − rj)
2

σ2
Yj

+ λ̃j |rj |,

with λ̃j = γ + 1
2

θ2·σ2
Xj

σ2
Yj

.

This takes the canonical form of the Lasso problem

min
r∈R

{
1

2
(z − r)2 + λ|r|

}
.

Letting

aj = β̂Yj − θ · β̂Xj , λj = λ̃j · σ2
Yj ,

we have:

l̃j(rj) =
1

2σ2
Yj

(aj − rj)
2 + λ̃j |rj | =

1

σ2
Yj

(
1

2
(aj − rj)

2 + λj |rj |
)
.

The minimizer of this expression is given by the soft-thresholding operator [12],

r∗j = Sλj (aj) =


sign(aj) · (|aj | − λj), if |aj | > λj ,

0, otherwise.
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Substituting back, we obtain:

rj =


sign(β̂Yj − θ · β̂Xj ) ·

(
|β̂Yj − θ · β̂Xj | − λ̃j · σ2

Yj

)
, if |β̂Yj − θ · β̂Xj | > λ̃j · σ2

Yj
,

0, otherwise.

where λ̃j = γ + 1
2

θ2·σ2
Xj

σ2
Yj

for all j ∈ S.
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S.4 Proof of Theorem 1

S.4.1 Notions and Assumptions

We first review some notions and assumptions that will be used in our proofs:

• The selected set of relevant IVs after randomization:

Sλ =

{
j : |

β̂Xj
σXj

+ Zj | > λ, j = 1, . . . , p

}
.

• Cardinality of the set of selected relevant IVs: sλ = |Sλ|.

• The average measure of instrument strength after selection:

κλ =
1

sλ

∑
j∈Sλ

β2
Xj

σ2
Yj

.

• In our bagging strategy, we denote the b-th bootstrap sample as S∗λ,b and the number of

occurrences in S∗λ,b for j-th IVs of Sλ as w∗
jb. We also denote the selected set of valid IVs as

V̂b =
{
j : r̂jb = 0 and j ∈ S∗λ,b

}
and the causal estimator as

θ̂b = A−1
b

∑
j∈V̂b

β̂Yj β̂Xj ,RB/σ
2
Yj ,

where

Ab =
∑
j∈V̂b

(β̂2
Xj ,RB − σ̂2

Xj ,RB)/σ
2
Yj .

• For convenience, we also denote the conditional expectation taken with respect to bootstrap

resampling as

E∗[ · ] = E
[
·
∣∣Sλ,{(β̂Yj , β̂Xj,RB)}j∈Sλ].
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Our final estimator is obtained by taking bootstrap aggregation

θ̃ =
1

B

B∑
b=1

θ̂b.

Assumption S1 (Measurement error model) (i)For any j ̸= j′, (β̂Yj , β̂Xj ) and (β̂Yj′ , β̂Xj′ )

are mutually independent.

(ii)For each j, the association pair (β̂Yj , β̂Xj ) followsβ̂Xj
β̂Yj

 ∼ N

 βXj

θβXj + rj

 ,

σ2
Xj

0

0 σ2
Yj


 .

Furthermore, there exists positive constants l and u such that m
n ≤ σ2

Xj
≤ M

n , m
n ≤ σ2

Yj
≤ M

n for

j = 1, ..., p.

Assumption S2 (Variance stabilization) There exists a variance stabilizing quantity aλ and a

vector τ ∈ Rsλ in which each component is independent of {(uj , νj)}j∈Sλ and uniformly bounded

away from infinity in probability in the sense that

sup
j∈Sλ

∣∣∣aλ · E∗
[
A−1
b · ŵjb

]
− τj

∣∣∣ = op(1),

where Ab =
∑

k∈Sλ ŵkb · (β̂
2
Xk,RB

− σ̂2
Xk,RB

)/σ2
Yk
, and

ŵjb =


w∗
jb · I(r̂jb = 0) if w∗

jb ≥ 1,

0 if w∗
jb = 0.

In addition, there is no dominating instrument in the sense that

maxj∈Sλ β
2
Xj∑

j∈Sλ β
2
Xj

p→ 0.

Assumption S3 (Negligible invalid IV induced bias) There is negligible bias induced by
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potential imperfect screening of invalid IVs after bootstrap aggregation in the sense that

aλ√
sλ · κλ

E∗[A−1
b

∑
j∈Sλ

β̂Xj,RB · rj · ŵjb/σ2
Yj

]
= op(1).

Assumption S4 (Instrument Selection) Define η = min1≤j≤p ηj and η = max1≤j≤p ηj, then

both η and η are bounded and bounded away from zero.

S.4.2 Proof

We begin by decomposing aλ√
sλ·κλ (θ̃ − θ0) and want to show that there is a leading term in the

decomposition converging to a Gaussian distribution. While the remained terms converges to zero

in probability. We notice that

aλ√
sλ · κλ

(θ̃ − θ0) =
aλ√
sλ · κλ

· E∗
[
θ̂b − θ0

]
.

Here

θ̂b − θ0 = A−1
b

{∑
j∈V̂b

ũj/σ
2
Yj +

∑
j∈V̂b

β̂Xj,RB · rj/σ2
Yj

}
= A−1

b

{ ∑
j∈Sλ

ŵjb · ũj/σ2
Yj +

∑
j∈Sλ

ŵjb · β̂Xj,RB · rj/σ2
Yj

}
.

where ũj = βXj ·
(
νj − θ0 · uj

)
+
(
νj · uj − θ0 · (u2j − σ̂2

Xj,RB
)
)
and

ŵjb =


w∗
jb · I(r̂jb = 0) if w∗

jb ≥ 1,

0 if w∗
jb = 0.

We then can decompose aλ√
sλ·κλ (θ̃ − θ0) into two terms:

aλ√
sλ · κλ

(θ̃ − θ0) =
aλ√
sλ · κλ

∑
j∈Sλ

E∗
[
A−1
b · ŵjb

]
· ũj/σ2

Yj︸ ︷︷ ︸
(I)

+
aλ√
sλ · κλ

E∗
[
A−1
b

∑
j∈Sλ

ŵjb · β̂Xj,RB · rj/σ2
Yj

]
︸ ︷︷ ︸

(II)

.
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Assumption S3 shows that the second term in the above formula satisfies (II) = op(1).

For the term (I), we further decompose it as

aλ√
sλ · κλ

∑
j∈Sλ

E∗
[
A−1
b · ŵjb

]
· ũj/σ2

Yj

=
1

√
sλ · κλ

∑
j∈Sλ

τj · ũj/σ2
Yj︸ ︷︷ ︸

(I.1)

+
1

√
sλ · κλ

∑
j∈Sλ

{
aλ · E∗

[
A−1
b · ŵjb

]
− τj

}
· ũj/σ2

Yj︸ ︷︷ ︸
(I.2)

.

Here (I.2) has the following upper bounds,

(I.2) ≤ sup
j∈Sλ

∣∣∣aλ · E∗
[
A−1
b · ŵjb

]
− τj

∣∣∣ · 1
√
sλ · κλ

∑
j∈Sλ

·ũj/σ2
Yj .

Under Assumption S2, we can prove (I.2) = op(1).

Combining all the above results, we have

aλ√
sλ · κλ

(θ̃ − θ0) =
1

√
sλ · κλ

∑
j∈Sλ

τj · ũj + op(1).

Using the proof of Theorem 1 in [33], we can show that when Assumption S1 and Assumption S4

hold and
maxj∈Sλ β

2
Xj∑

j∈Sλ
β2
Xj

p→ 0, conditional on the selection event Sλ, 1√
sλ·κλ

∑
j∈Sλ τj · ũj converges to

a Gaussian distribution as sλ
p→∞ and κλ

λ2
p→∞.

Therefore, we can conclude that aλ√
sλ·κλ (θ̃ − θ0) converges to a Gaussian distribution.

S.4.3 Verifying the Assumption S2 in the case with perfect screening property

To cast more insights into Assumption S2, we next consider a special case where perfect IV screening

is achieved. In the case of perfect IV screening, we have

Ab =
∑
k∈Vλ

w∗
kb · (β̂2

Xk,RB
− σ̂2

Xk,RB
)/σ2

Yj .

In what follows, we argue that Assumption S2 holds for both valid and invalid IVs in Sλ:
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• For valid IVs in Vλ (Vλ is the collection of all valid IVs in Sλ), we define

τj = aλ · E∗
[ w∗

jb∑
k∈Vλ w

∗
kb · β2

Xk
/σ2

Yk

]
, aλ =

∑
k∈Vλ

β2
Xk

/σ2
Yk
,

and we have τj independent of {(uj , νj)}j∈Sλ . In this context, we have ŵjb = w∗
jb and can

show that ∣∣∣aλ · E∗
[
A−1
b · ŵjb

]
− τj

∣∣∣ = ∣∣∣aλ · E∗
[
A−1
b · w

∗
jb

]
− τj

∣∣∣ = op(1).

For this bound to hold uniformly for j ∈ Vλ as stated in the assumption, given that w∗
jb follows

a multinomial distribution with an equal mean, we conjecture that this condition is likely to

hold as long as Ab converges to a center that is independent of j. In fact, under appropriate

conditions (See Section S.4.4 in the Supplement Material for full theoretical justifications),

we can show that,

Ab =
∑
k∈Vλ

β2
Xk

/σ2
Yk
· (1 + op(1)),

which is indeed independent of j.

• For invalid IV j ∈ Sλ/Vλ, under perfect screening property, we have r̂jb = 0 and therefore

ŵjb = 0. Set τj = 0 for j ∈ Sλ/Vλ, we have

sup
j∈Sλ/Vλ

∣∣∣aλ · E∗
[
A−1
b · ŵjb

]
− τj

∣∣∣ = op(1).

Combining these two parts of results, we can verify that the Assumption S2 is satisfied.

S.4.4 The asymptotic analysis of Ab under perfect screening property

Notice that

Ab =
∑
k∈Vλ

w∗
kb · (β̂2

Xk,RB
− σ̂2

Xk,RB
)/σ2

Yk
.
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We want to show Ab =
∑

k∈Vλ β
2
Xk

/σ2
Yk
· (1 + op(1)) under these two conditions

maxk∈Vλ β
2
Xk∑

k∈Vλ β
2
Xk

→ 0 and
vλ ·maxk∈Vλ |(β̂2

Xk
− σ̂2

Xk,RB
)/σ2

Yj
− β2

Xk
/σ2

Yj
|∑

k∈Vλ β
2
Xk

/σ2
Yj

= op(1).

To prove this result, we begin with the following decomposition,

Ab −
∑
k∈Vλ

β2
Xk

/σ2
Yk

=
∑
k∈Vλ

w∗
kb · (β̂2

Xk
− σ̂2

Xk,RB
)/σ2

Yk
−
∑
k∈Vλ

w∗
kb · β2

Xk
/σ2

Yk
+
∑
k∈Vλ

w∗
kb · β2

Xk
/σ2

Yj −
∑
k∈Vλ

β2
Xk

/σ2
Yk

=
∑
k∈Vλ

w∗
kb · (β̂2

Xk
− σ̂2

Xk,RB
)/σ2

Yk
−
∑
k∈Vλ

w∗
kb · β2

Xk
/σ2

Yk
+
∑
k∈Vλ

(w∗
kb − 1) · β2

Xk
/σ2

Yk

=
∑
k∈Vλ

w∗
kb ·
(
(β̂2
Xk
− σ̂2

Xk,RB
)/σ2

Yk
− β2

Xk
/σ2

Yk

)
+
∑
k∈Vλ

(w∗
kb − 1) · β2

Xk
/σ2

Yk
.

It suffices to prove the two terms on the right-hand side are of the asymptotic order op(
∑

k∈Vλ β
2
Xk

/σ2
Yk
).

Notice that [w∗
1,b, . . . , w

∗
sλ,b

] follows a multinomial distribution with E[w∗
k,b] = 1 for all k ∈ Sλ and

V ar[w∗
k,b] =

1

sλ
· (1− 1

sλ
), for all k ∈ Sλ,

Cov(w∗
i,b, w

∗
j,b) = −

1

sλ
for all i, j ∈ Sλ such that i ̸= j.

• To show

∑
k∈Vλ

(w∗
kb−1)·β2

Xk
/σ2
Yk∑

k∈Vλ
β2
Xk
/σ2
Yk

= op(1),

we have
∑

k∈Vλ(w
∗
kb − 1) · β2

Xk
/σ2

Yj
= Op(

√
V ar[

∑
k∈Vλ(w

∗
kb − 1) · β2

Xk
/σ2

Yk
]) and

V ar[
∑
k∈Vλ

(w∗
kb − 1) · β2

Xk
/σ2

Yk
] =

∑
k∈Vλ

(1− 1

sλ
) · (β2

Xk
/σ2

Yk
)2 − 1

sλ

∑
i,j∈Vλ, i ̸=j

(β2
Xi/σ

2
Yi) · (β

2
Xj/σ

2
Yk
)

=
∑
k∈Vλ

(β2
Xj/σ

2
Yk
)2 − 1

sλ
(
∑
k∈Vλ

β2
Xk

/σ2
Yk
)2.
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Notice that

V ar[
∑

k∈Vλ(w
∗
kb − 1) · β2

Xk
/σ2

Yk
]

(
∑

k∈Vλ β
2
Xk

/σ2
Yk
)2

=

∑
k∈Vλ(β

2
Xk

/σ2
Yk
)2 − 1

sλ
(
∑

k∈Vλ β
2
Xk

/σ2
Yk
)2

(
∑

k∈Vλ β
2
Xi
/σ2

Yk
)2

=

∑
k∈Vλ(β

2
Xk

/σ2
Yk
)2

(
∑

k∈Vλ β
2
Xk

/σ2
Yk
)2
− 1

sλ

≤
maxj∈Vλ β

2
Xk

/σ2
Yk
·
∑

k∈Vλ β
2
Xk

/σ2
Yk

(
∑

k∈Vλ β
2
Xk

/σ2
Yk
)2

− 1

sλ

=
maxj∈Vλ β

2
Xk

/σ2
Yk∑

k∈Vλ β
2
Xk

/σ2
Yk

− 1

sλ
,

if we have
maxk∈Vλ β

2
Xk∑

k∈Vλ β
2
Xk

→ 0,

∑
k∈Vλ

(w∗
kb−1)·β2

Xk
/σ2
Yk∑

k∈Vλ
β2
Xk
/σ2
Yk

= op(1) directly follows.

• To show

∑
k∈Vλ

w∗
kb·
(
(β̂2
Xk

−σ̂2
Xk,RB

)/σ2
Yk

−β2
Xk
/σ2
Yk

)
∑
k∈Vλ

β2
Xk
/σ2
Yk

= op(1), we further decompose it into two terms

∑
k∈Vλ(w

∗
kb − 1) ·

(
(β̂2
Xk
− σ̂2

Xk,RB
)/σ2

Yk
− β2

Xk
/σ2

Yk

)∑
k∈Vλ β

2
Xk

/σ2
Yk

+

∑
k∈Vλ

(
(β̂2
Xk
− σ̂2

Xk,RB
)/σ2

Yk
− β2

Xk
/σ2

Yk

)∑
k∈Vλ β

2
Xk

/σ2
Yk

.

∑
k∈Vλ

(
(β̂2
Xk

−σ̂2
Xk,RB

)/σ2
Yk

−β2
Xk
/σ2
Yk

)
∑
k∈Vλ

β2
Xk
/σ2
Yk

= op(1) can directly follow from Lemma S.13 of the Supple-

mental Material of [33].

To prove

∑
k∈Vλ

(w∗
kb−1)·

(
(β̂2
Xk

−σ̂2
Xk,RB

)/σ2
Yk

−β2
Xk
/σ2
Yk

)
∑
k∈Vλ

β2
Xk
/σ2
Yk

= op(1), we use

∑
k∈Vλ(w

∗
kb − 1) ·

(
(β̂2
Xk
− σ̂2

Xk,RB
)/σ2

Yk
− β2

Xk
/σ2

Yk

)∑
k∈Vλ β

2
Xk

/σ2
Yk

= Op(
E|
∑

k∈Vλ(w
∗
kb − 1) ·

(
(β̂2
Xk
− σ̂2

Xk,RB
)/σ2

Yk
− β2

Xk
/σ2

Yk

)
|∑

k∈Vλ β
2
Xk

/σ2
Yk

).
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Notice that

E|
∑
k∈Vλ

(w∗
kb − 1) ·

(
(β̂2
Xk
− σ̂2

Xk,RB
)/σ2

Yk
− β2

Xk
/σ2

Yk

)
|

≤ max
j∈Vλ
|(β̂2

Xk
− σ̂2

Xk,RB
)/σ2

Yk
− β2

Xk
/σ2

Yk
| ·
∑
k∈Vλ

E|w∗
kb − 1|,

and E|w∗
kb − 1| = E(w∗

kb − 1) + 2 · P(w∗
kb = 0) = 2 · (1− 1

sλ
).

If we have

vλ ·maxk∈Vλ |(β̂2
Xk
− σ̂2

Xk,RB
)/σ2

Yj
− β2

Xk
/σ2

Yj
|∑

k∈Vλ β
2
Xk

/σ2
Yk

= op(1).

Then can show

∑
k∈Vλ

(w∗
kb−1)·

(
(β̂2
Xk

−σ̂2
Xk,RB

)/σ2
Yk

−β2
Xk
/σ2
Yk

)
∑
k∈Vλ

β2
Xk
/σ2
Yk

= op(1) and therefore

∑
k∈Vλ w

∗
kb ·
(
(β̂2
Xk
− σ̂2

Xk,RB
)/σ2

Yk
− β2

Xk
/σ2

Yk

)∑
k∈Vλ β

2
Xk

/σ2
Yk

= op(1).

Combining all these results, we have Ab =
∑

k∈Vλ β
2
Xk

/σ2
Yk
· (1 + op(1)).

S.5 Invalid IV screening consistency

In this section, we show that under Conditions 1-7, the proposed invalid IV screening procedure is

“nearly perfect” as sλ goes to infinity.

S.5.1 Notations

We first introduce notations to be used in the sufficient conditions and our proofs below:

• The correct set of valid IVs in Sλ:

Vλ =
{
j ∈ Sλ : βXj ̸= 0 and rj = 0

}
.

• Cardinality of the set of valid IVs: vλ = |Vλ|.
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• The selected set of valid IVs:

V̂λ =
{
j : r̂j = 0 and j ∈ Sλ

}
.

• Cardinality of the set of selected valid IVs: v̂λ = |V̂λ|.

• For any V ⊆ Sλ, we use the following notation:

– Cardinality of the set: v = |V|.

– The measure of average instrument strength of V: κλ(V) = 1
v

∑
j∈V

β2
Xj

σ2
Yj

.

– The measure of average pleiotropic effects of V: rλ(V) = 1
v

∑
j∈V

r2j
σ2
Yj

.

– Correlation between instrument strength and pleiotropic effects of V when V has at least

one non-zero rj :

ρ(V) = Corr2
(
{βXj}j∈V , {rj}j∈V

)
=

(
∑
j∈V

rj ·βXj
σ2
Yj

)2

∑
j∈V

r2j
σ2
Yj

·
∑
j∈V

β2
Xj

σ2
Yj

.

To identify invalid IVs, we use the following measurement error models.

β̂Yj = θ · βXj + rj + νj , β̂Xj,RB = βXj + uj , j ∈ Sλ.

and let n1 = n2 = n be the sample sizes of the two GWAS summary datasets for X and Y ,

respectively.

The invalid IV screening is obtained by solving

min
θ∈R,rj

l̂(θ, {rj}j∈Sλ ,
{
β̂Yj , σYj , β̂Xj,RB , σ̂Xj,RB

}
j∈Sλ

), s.t.
∑
j∈Sλ

1rj=0 = v.

where

l̂(θ, {rj}j∈Sλ ,
{
β̂Yj , σYj , β̂Xj,RB , σ̂Xj,RB

}
j∈Sλ

) =
∑
j∈Sλ

(β̂Yj − θ · β̂Xj,RB − rj)
2

σ2
Yj

−
∑
j∈Sλ

θ2 · σ̂2
Xj,RB

σ2
Yj

· 1rj=0.
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Here 1(·) is the indicator function and v is a tuning parameter representing the unknown number

of valid IVs. We propose a generalized Bayesian Information Criterion(GBIC) to select the best v:

GBIC(v) = l̂(θ̂, {r̂j}j∈Sλ ,
{
β̂Yj , σYj , β̂Xj,RB , σ̂Xj,RB

}
j∈Sλ

) + κn · (sλ − v).

Then we select v̂ = argmin
v

GBIC(v) and estimate V̂λ =
{
j : r̂j,v̂ = 0 and j ∈ Sλ

}
, which is the

set of the estimated invalid IVs..

S.5.2 Sufficient conditions

Condition 1 (Bound of Orlicz norm) Fix λ,
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

is a sub-exponential random variable

for all j ∈ Sλ and we have || νjσYj ||
2
ψ2
, || ujσYj ||

2
ψ2
, ||

√
ν2j−σ2

Yj

σ2
Yj

||ψ2, ||

√
u2j−σ2

Xj,RB

σ2
Yj

||ψ2, ||

√
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

||ψ2

bounded away from ∞ uniformly for all j ∈ Sλ.

This condition is a technical condition. It places some restrictions on the tail distributions of

the noise terms, aiming to ensure that they have good concentration behaviors.

Condition 2 (Orders of the variances and sample sizes) There exist positive constants m

and M such that we have m
n ≤ σ2

Xj
, σ2

Yj
≤ M

n for j = 1, ..., p.

In this condition, we require the variances of both β̂Xj and β̂Yj have the orders 1
n uniformly

for all j ∈ Sλ, which is a normal assumption in two-sample summary Mendelian Randomization

literature.

Condition 3 (Plurality and no perfect correlation) For all V ⊆ Sλ and V contains at least

one rj ̸= 0, whenever ρ(V) = 1, we have |Vλ| >
∣∣V∣∣; whenever ρ(V) < 1, we have the correlation

coefficient ρ(V) < 1 is upper bounded by a constant c0 smaller than one.

Here ρ(V) measures the correlation between instrument strength and pleiotropic effects of V,

which is defined as

ρ(V) = Corr2
(
{βXj}j∈V , {rj}j∈V

)
=

(
∑
j∈V

rj ·βXj
σ2
Yj

)2

∑
j∈V

r2j
σ2
Yj

·
∑
j∈V

β2
Xj

σ2
Yj

.
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This condition is closely related to the plural validity assumption commonly made in two-

sample summary data Mendelian Randomization literature [28, 20], which ensures the uniqueness

and identifiability of the causal effect θ. By Cauchy-Schwartz inequality, we can see that ρ(V) = 1

indicates that there exists a c ∈ R such that
rj
βXj

= c holds for all j ∈ V. If the first part of this

condition does not hold, there will be a V∗ such that |V∗| ≥ |Vλ| and
rj
βXj

= c > 0 holds for all

j ∈ V∗. We expect that the invalid IV screening procedure will tend to screen out Sλ/V∗ and

leave V∗. Therefore, the sub-sequential causal estimation using V∗ will be centered around θ0 + c

instead of θ0, where θ0 is the true causal effect. In this case, we fail to identify the true causal

effect. Furthermore, the second part of this condition is to ensure that different clusters of IV set

Vc = {j ∈ Sλ |
rj
βXj

= c} are sufficiently separable, so that there will not be a IV set V∗ ̸= Vλ

with ρ(V∗)→ 1 selected by the invalid screening procedure. Without this, we might not be able to

distinguish the IV set V∗ and Vλ.

Condition 4 (Boundedness) For any V ∈ Sλ, |θ̂(V)| is uniformly bounded away from ∞ with

probability goes to 1.

This condition requires that for any subset V ⊆ Sλ, the causal estimate

θ̂(V) =

∑
j∈V

β̂Yj β̂Xj,RB
σ2
Yj∑

j∈V
β̂2
Xj,RB

−σ̂2
Xj,RB

σ2
Yj

based on V should not be too large. In fact, when the Condition 1 holds, this condition can be

satisfied in the case that
rj
βXj

is bounded away from infinity for all j ∈ Sλ and βXj is sufficiently

separated from 0 for all j ∈ Sλ. To see this, we can decompose θ̂(V) as follows:

θ̂(V) =

∑
j∈V

(θ0βXj+rj)βXj
σ2
Yj

+
∑

j∈V
βXj νj

σ2
Yj

+
∑

j∈V
(θ0βXj+rj)uj

σ2
Yj

+
∑

j∈V
ujνj
σ2
Yj∑

j∈V
β2
Xj

σ2
Yj

+ 2
∑

j∈V
βXjuj

σ2
Yj

+
∑

j∈V
u2j−σ2

Xj,RB

σ2
Yj

−
∑

j∈V
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

=

∑
j∈V(θ0 +

rj
βXj

) ·
β2
Xj

σ2
Yj

+
∑

j∈V
βXj νj

σ2
Yj

+
∑

j∈V(θ0 +
rj
βXj

) ·
βXjuj

σ2
Yj

+
∑

j∈V
ujνj
σ2
Yj∑

j∈V
β2
Xj

σ2
Yj

+ 2
∑

j∈V
βXjuj

σ2
Yj

+
∑

j∈V
u2j−σ2

Xj,RB

σ2
Yj

−
∑

j∈V
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

If min
j∈Sλ
|βXj | is is sufficiently separated from 0 , with Condition 1, we can verify that there
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exists a c > 0 such that the denominator is uniformly larger than c ·
∑

j∈V
β2
Xj

σ2
Yj

with probability

going to one for any possible V. Similarly, we can also show that when max
j∈Sλ
| rjβXj | is bounded away

from infinity, there exists a C > 0 such that the numerator is bounded away from C ·
∑

j∈V
β2
Xj

σ2
Yj

with probability going to one for any possible V. Therefore, we can verify that |θ̂(V)| is uniformly

bounded away from ∞ with probability going to one.

Condition 5 (Separation of rj ̸= 0 and 0)

min
j∈Sλ, rj ̸=0

rj ≫ max
{(sλ · ln(sλ)) 1

2

n
1
2

,
κ

1
2
n

n
1
2

}
.

In this condition, we require the pleiotropy effects rj ̸= 0 of invalid IVs to be bounded away

from 0. In this case, our invalid IV screening procedure will be able to distinguish invalid IVs

and valid IVs. This condition is similar to the ”beta-min” condition in the high-dimension linear

regression setting. The only difference is that it is made in rj instead of the parameter of interest

θ0. Without this condition, we will not be able to screen out some invalid IVs with rj close to 0 in

the invalid IV screening procedure, and the perfect screening property will not hold.

Condition 6 (The order of vλ) The number of valid IVs has the same order of sλ. In other

words, vλ
sλ

is bounded away from zero. There exists a constant c1 such that 0 < c1 < 1. For all

V ⊆ Sλ containing at least one nonzero element rj ̸= 0, whenever ρ(V) = 1, it holds that v < c1 ·vλ.

The first part of this condition requires that the number of valid IVs in Sλ should be sufficiently

large. To be specific, it should be of the same order as the total number of IVs in Sλ. This condition

can be further weakened by adjusting the penalized coefficient of GBIC. The second part of this

condition imposes constraints on the cardinality of the cluster {j ∈ Sλ|
rj
βXj

= c}. It requires for

any c ̸= 0, the cardinality of the IV clusters {j ∈ Sλ|
rj
βXj

= c} should be sufficiently separated from

the total number of valid IVs vλ so that the algorithm will not fail to identify the true valid IV set

Vλ. If there exists a c0 ̸= 0 such that the cardinality of the IV clusters {j ∈ Sλ|
rj
βXj

= c0} is very

close to vλ, then the algorithm might fail to distinguish {j ∈ Sλ|
rj
βXj

= c0} and the valid IV set Vλ.
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Condition 7 (high dimension BIC)

κn
n · min

j∈Sλ, rj ̸=0
r2j
→ 0 and κn ≫ ln(sλ).

Condition 7∗ (high dimension BIC)

κn
n · min

j∈Sλ, rj ̸=0
r2j
→ 0 and κn ≫ sλ · ln(sλ).

S.5.3 Theoretical Results

Define a collection of set

Vvalid = {V|V ⊆ Sλ, rj = 0 for all j ∈ V, and |V| ≥ c1 · |Vλ|} .

Here c1 is the constant that we introduce in Condition 6.

Theorem S1 Under Condition 1-7, our IV screening procedure can consistently select the sets

inside Vvalid. Mathematically, this property is expressed as:

P(V̂λ ∈ Vvalid)→ 1, as sλ →∞.

where V̂λ represents the set of IVs selected by the screening procedure.

Theorem S2 Under Condition 1-6 and Condition 7∗, our IV screening procedure can consistently

select the complete set of valid IVs Vλ. Mathematically, this property is expressed as:

P(V̂λ = Vλ)→ 1, as sλ →∞.

where V̂λ represents the set of IVs selected by the screening procedure.
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S.5.4 Proof of Theorem S1

For any V ⊆ Sλ, we denote a collection of sparse vectors

Rv =
{
a ∈ R|Sλ|×1 : aj = 0, for j ∈ V, ak ̸= 0, for k ∈ Vc

}

and a function

h(V, θ) = min
r∈Rv

∑
j∈Sλ

l̂
(
θ, r; β̂Yj , σYj , β̂Xj,RB , σ̂Xj,RB

)

=
∑
j∈V

(β̂Yj − θ · β̂Xj,RB)2 − θ2 · σ̂2
Xj,RB

σ2
Yj

.

Now we want to show P(V̂λ /∈ Vvalid)→ 0 as sλ →∞ by utilizing the following inequality:

P(V̂λ /∈ Vvalid) = P
(

min
v∈N+,v≤sλ

[
min

|V|=v,V /∈Vvalid

min
θ∈R

h(V, θ)− κn · v
]
≤ min

θ∈R
h(Vλ, θ)− κn · vλ

)
≤

⋃
V⊆Sλ,V /∈Vvalid

P
(
min
θ∈R

h(V, θ)− κn · |V| ≤ min
θ∈R

h(Vλ, θ)− κn · vλ
)

≤
sλ∑
v=1

(
sλ
v

)
max

|V|=v,V /∈Vvalid

P
(
min
θ∈R

h(V, θ)− κn · v ≤ h(Vλ, θ0)− κn · vλ
)

≤
sλ∑
v=1

sλ
v max
|V|=v,V /∈Vvalid

P
(
min
θ∈R

h(V, θ)− κn · v ≤ h(Vλ, θ0)− κn · vλ
)

≤ max
V /∈Vvalid

e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V, θ)− κn · |V| ≤ h(Vλ, θ0)− κn · vλ
)

= e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)
.

(S1)

where V∗ = argmax
V /∈Vvalid

e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V, θ)− κn · |V| ≤ h(Vλ, θ0)− κn · vλ
)
and v∗ = |V∗|.

This is because the above inequality implies that as long as we show that

e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)
→ 0. (S2)

then P(V̂λ /∈ Vvalid)→ 0 holds. Here, we also note that the first equation in Eq (S1) follows from

the definition of the optimization problem defined in Equation 2 in the manuscript, the second to

the fifth inequalities in Eq (S1) hold following min
θ∈R

h(Vλ, θ) ≤ h(Vλ, θ0),
(
sλ
v

)
≤ svλ and some basic
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calculations.

To prove Equation (2) goes to 0, we discuss V∗ /∈ Vvalid in three different cases.

• |V∗| = v∗ ≥ vλ and V∗ ̸= Vλ,

• c1 · vλ ≤ |V∗| < vλ but ρ(V∗) < 1,

• |V∗| = v∗ < c1 · vλ.

In each case, we show e(sλ+1)·ln(sλ) ·P
(
min
θ∈R

h(V∗, θ)−κn ·v∗ ≤ h(Vλ, θ0)−κn ·vλ
)
→ 0 and therefore

(2) holds uniformly for all V∗ ⊆ Sλ and V∗ ̸= Vλ.

S.5.4.1 Case 1: |V∗| = v∗ ≥ vλ and V∗ ̸= Vλ

To show the above results, we analyze the asymptotic properties of h(Vλ, θ0), min
θ∈R

h(V∗, θ) and κn.

We start with h(Vλ, θ0) and decompose it below following our notation defined in Section S.5.1.

h(Vλ, θ0) =
∑
j∈Vλ

(β̂Yj − θ0 · βXj )2

σ2
Yj

+ θ20 ·
∑
j∈Vλ

(β̂Xj,RB − βXj )
2 − σ̂2

Xj,RB

σ2
Yj

− 2θ0 ·
∑
j∈Vλ

(β̂Yj − θ0 · βXj )(β̂Xj,RB − βXj )

σ2
Yj

=
∑
j∈Vλ

ν2j
σ2
Yj

+ θ20 ·
∑
j∈Vλ

u2j − σ̂2
Xj,RB

σ2
Yj

− 2θ0 ·
∑
j∈Vλ

νjuj
σ2
Yj

. (S3)

Next, we study the asymptotic property of min
θ∈R

h(V∗, θ). We denote θ̂(V∗) = argmin
θ∈R

h(V∗, θ) and

decompose h(V∗, θ̂(V∗)) in a similar way as h(Vλ, θ0), following our notation defined in Section
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S.5.1.

h(V∗, θ̂(V∗)) =
∑
j∈V∗

(β̂Yj − θ̂(V∗) · βXj )2

σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

(β̂Xj,RB − βXj )
2 − σ̂2

Xj,RB

σ2
Yj

+ 2θ̂(V∗)
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · (β̂Xj,RB − βXj )

σ2
Yj

− 2θ̂(V∗)
∑
j∈V∗

(β̂Yj − θ0 · βXj − rj)(β̂Xj,RB − βXj )

σ2
Yj

=
∑
j∈V∗

(θ0 · βXj + rj + νj − θ̂(V∗) · βXj )2

σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

u2j − σ̂2
Xj,RB

σ2
Yj

+ 2θ̂(V∗)
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

− 2θ̂(V∗)
∑
j∈V∗

νjuj
σ2
Yj

=
∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

+
∑
j∈V∗

ν2j
σ2
Yj

+ 2
∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj ) · νj
σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

u2j − σ̂2
Xj,RB

σ2
Yj

+ 2θ̂(V∗)
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

− 2θ̂(V∗)
∑
j∈V∗

νjuj
σ2
Yj

.

With these decomposition, the probability in Equation (2) can be rewritten as

P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)

= P
( ∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

+ κn · (vλ − v∗) ≤ −
∑
j∈V∗

ν2j
σ2
Yj

− 2
∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj ) · νj
σ2
Yj

− θ̂(V∗)2
∑
j∈V∗

u2j − σ2
Xj,RB

σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− 2θ̂(V∗)
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

+ 2θ̂(V∗)
∑
j∈V∗

νjuj
σ2
Yj

+
∑
j∈Vλ

ν2j
σ2
Yj

+ θ20
∑
j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

− θ20
∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− 2θ0
∑
j∈Vλ

νjuj
σ2
Yj

)
.

When |V∗| = v∗ ≥ vλ and V∗ ̸= Vλ, we know that there is at least one rj ∈ V∗ such that rj ̸= 0.

So ρ(V∗) is well-defined and by Condition 3 we have ρ(V∗) ≤ c0. By some calculations, we can see

that

∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

≥ min
θ∈R

∑
j∈V∗

(θ0 · βXj + rj − θ · βXj )2

σ2
Yj

=
∑
j∈V∗

r2j
σ2
Yj

· (1− ρ(V∗)).
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with probability 1. Therefore,

∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

≥
∑
j∈V∗

r2j
σ2
Yj

· (1− c0).

with probability 1.

Then under Condition 4, there exists a C0 > 0 such that

P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)

≤ P
( ∑

j∈V∗

(θ0 · βXj
+ rj − θ̂(V∗) · βXj

)2

σ2
Yj

− κn · (v∗ − vλ) ≤ −
∑
j∈V∗

ν2j − σ2
Yj

σ2
Yj

− θ̂(V∗)2
∑
j∈V∗

u2
j − σ2

Xj,RB

σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− 2
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

− 2θ̂(V∗)
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj

σ2
Yj

+ 2θ̂(V∗)
∑
j∈V∗

νjuj

σ2
Yj

+
∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

+ θ20
∑
j∈Vλ

u2
j − σ2

Xj,RB

σ2
Yj

− θ20
∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− 2θ0
∑
j∈Vλ

νjuj

σ2
Yj

)
≤ P

( ∑
j∈V∗

(θ0 · βXj
+ rj − θ̂(V∗) · βXj

)2

σ2
Yj

− κn · (v∗ − vλ) ≤
∣∣ ∑
j∈V∗

ν2j − σ2
Yj

σ2
Yj

∣∣+ θ̂(V∗)2
∣∣ ∑
j∈V∗

u2
j − σ2

Xj,RB

σ2
Yj

∣∣
+ 2
∣∣θ̂(V∗)

∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj

σ2
Yj

∣∣+ 2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣+ 2
∣∣θ̂(V∗)

∑
j∈V∗

νjuj

σ2
Yj

∣∣
+ θ̂(V∗)2

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ ∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈Vλ

νjuj

σ2
Yj

∣∣)
≤ P

( ∑
j∈V∗

(θ0 · βXj
+ rj − θ̂(V∗) · βXj

)2

σ2
Yj

− κn · (v∗ − vλ) ≤
∣∣ ∑
j∈V∗

ν2j − σ2
Yj

σ2
Yj

∣∣+ C2
0

∣∣ ∑
j∈V∗

u2
j − σ2

Xj,RB

σ2
Yj

∣∣
+ C2

0

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2C0

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj

σ2
Yj

∣∣+ 2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣
+ 2C0

∣∣ ∑
j∈V∗

νjuj

σ2
Yj

∣∣+ ∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈Vλ

νjuj

σ2
Yj

∣∣).
Denote the event

∑
j∈V∗

(θ0 · βXj
+ rj − θ̂(V∗) · βXj

)2

σ2
Yj

− κn · (v∗ − vλ) ≤
∣∣ ∑
j∈V∗

ν2j − σ2
Yj

σ2
Yj

∣∣+ C2
0

∣∣ ∑
j∈V∗

u2
j − σ2

Xj,RB

σ2
Yj

∣∣
+ C2

0

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2C0

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj

σ2
Yj

∣∣+ 2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣
+ 2C0

∣∣ ∑
j∈V∗

νjuj

σ2
Yj

∣∣+ ∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈Vλ

νjuj

σ2
Yj

|
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as C(V∗) and

δ(V∗) =
∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )
2

σ2
Yj

− κn · (v∗ − vλ),

we have

C(V∗) ⊆

C2
0 ·
∣∣ ∑
j∈V∗

u2
j − σ2

Xj,RB

σ2
Yj

∣∣ ≥ δ(V∗)

10

⋃
θ20 ·

∣∣ ∑
j∈Vλ

u2
j − σ2

Xj,RB

σ2
Yj

∣∣ ≥ δ(V∗)

10


⋃∣∣ ∑

j∈V∗

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ δ(V∗)

10

⋃
∣∣ ∑

j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ δ(V∗)

10

⋃
θ20 ·

∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ δ(V∗)

10


⋃C2

0 ·
∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ δ(V∗)

10

⋃
2C0 ·

∣∣ ∑
j∈Vλ

νjuj

σ2
Yj

∣∣ ≥ δ(V∗)

10

⋃
2θ0 ·

∣∣ ∑
j∈V∗

νjuj

σ2
Yj

∣∣ ≥ δ(V∗)

10


⋃2

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣ ≥ δ(V∗)

10


⋃2C0 ·

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj

σ2
Yj

∣∣ ≥ δ(V∗)

10

 .

When |V∗| = v∗ ≥ vλ, we know that the number of rj that is not equal to zero for j ∈ V∗ is at

least v∗ − vλ. Then if κn

min
j∈Sλ, rj ̸=0

r2
j

σ2
Yj

→ 0 (Condition 7), we have κn·(v∗−vλ)∑
j∈V∗

r2
j

σ2
Yj

→ 0. So there exists a

c > 0 such that

δ(V∗) =
∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

− κn · (v∗ − vλ) ≥
∑
j∈V∗

r2j
σ2
Yj

· c.
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uniformly holds for all |V∗| = v∗ ≥ vλ and V∗ ̸= Vλ. Then P(C(V∗)) is bounded by

P
(
C2
0 ·
∣∣ ∑
j∈V∗

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ c

10

∑
j∈V∗

r2j
σ2
Yj

)
+ P

(
θ20 ·

∣∣ ∑
j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ c

10

∑
j∈V∗

r2j
σ2
Yj

)

+ P
(
C2
0 ·
∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ c

10

∑
j∈V∗

r2j
σ2
Yj

)
+ P

(
θ20 ·

∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ c

10

∑
j∈V∗

r2j
σ2
Yj

)

+ P
(∣∣ ∑

j∈V∗

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ c

10

∑
j∈V∗

r2j
σ2
Yj

)
+ P

(∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ c

10

∑
j∈V∗

r2j
σ2
Yj

)
+ P

(
2θ0 ·

∣∣ ∑
j∈Vλ

νjuj
σ2
Yj

∣∣ ≥ c

10

∑
j∈V∗

r2j
σ2
Yj

)
+ P

(
2C0 ·

∣∣ ∑
j∈V∗

νjuj
σ2
Yj

∣∣ ≥ c

10

∑
j∈V∗

r2j
σ2
Yj

)

+ P
(
2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣ ≥ 1

10

( ∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

− κn · (v∗ − vλ)
))

+ P
(
2C0 ·

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

∣∣ ≥ 1

10

( ∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

− κn · (v∗ − vλ)
))

.

Using Lemma 1, we know that there exists a c′ > 0 such that the first eight terms are bounded by

2 · e−c
′·min

{
v∗2·r2λ(V

∗)
vλ

, v∗·r2λ(V
∗), v∗·rλ(V∗)

}
. We also have

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

∣∣ ≤
√√√√∑

j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj)2

σ2
Yj

√√√√∑
j∈V∗

u2j
σ2
Yj

and

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣ ≤
√√√√∑

j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj)2

σ2
Yj

√√√√∑
j∈V∗

ν2j
σ2
Yj

.

That means there exists a c′′ > 0 such that P
(
2
∣∣ ∑
j∈V∗

(θ̂(V∗)·βXj−θ0·βXj−rj)·νj
σ2
Yj

∣∣ ≥ δ(V∗)
10

)
is further

bounded by P
( ∑
j∈V∗

ν2j
σ2
Yj

≥ c′′
∑
j∈V∗

r2j
σ2
Yj

)
through

P
(
2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣ ≥ 1

10

( ∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

− κn · (v∗ − vλ)
))

≤ P
(
2

√√√√∑
j∈V∗

ν2j
σ2
Yj

≥

1
10

( ∑
j∈V∗

(θ0·βXj+rj−θ̂(V
∗)·βXj )

2

σ2
Yj

− κn · (v∗ − vλ)
)

√ ∑
j∈V∗

(θ0·βXj+rj−θ̂(V
∗)·βXj )

2

σ2
Yj

)

≤ P
( ∑
j∈V∗

ν2j
σ2
Yj

≥ c′′
∑
j∈V∗

r2j
σ2
Yj

)
.
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Similarly,

P
(
2C0 ·

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

∣∣ ≥ 1

10

( ∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

− κn · (v∗ − vλ)
))

≤ P
( ∑
j∈V∗

u2j
σ2
Yj

≥ c′′
∑
j∈V∗

r2j
σ2
Yj

)
.

Using Lemma 1, we can also show that these two terms are bounded by 2·e−c
′·min

{
v∗2·r2λ(V

∗)
vλ

, v∗·r2λ(V
∗), v∗·rλ(V∗)

}
.

To prove e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ) − κn · v∗ ≤ h(Vλ, θ0) − κn · vλ
)
→ 0 for any V∗ ⊆ Sλ such

that |V∗| = v∗ ≥ vλ, we only need to show

2e(sλ+1)·ln(sλ) · e
−c′·min

{
v∗·r2λ(V

∗), v∗·rλ(V∗),
v∗2·r2λ(V

∗)
vλ

}
→ 0.

Using v∗ ≥ vλ, it suffices to show

2e(sλ+1)·ln(sλ) · e−c′·min{v∗·r2λ(V∗), v∗·rλ(V∗)} → 0.

We prove this formula in Lemma 2 and conclude that

e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)
→ 0.

uniformly for all V∗ ⊆ Sλ such that |V∗| = v∗ ≥ vλ and V∗ ̸= Vλ.

S.5.4.2 Case 2: When c1 · vλ ≤ |V∗| < vλ but ρ(V∗) < 1

When c1 ·vλ ≤ |V∗| < vλ but ρ(V∗) < 1, we can know from Condition 3 that ρ(V∗) ≤ c0. Therefore,

∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

≥
∑
j∈V∗

r2j
σ2
Yj

· (1− c0).
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with probability 1. Similarly, under Condition 4, as n→∞, there exists a C0 > 0 such that

P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)

≤ P
( ∑

j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )
2

σ2
Yj

− κn · (v∗ − vλ) ≤
∣∣ ∑
j∈V∗

ν2j − σ2
Yj

σ2
Yj

∣∣+ C2
0

∣∣ ∑
j∈V∗

u2
j − σ2

Xj,RB

σ2
Yj

∣∣
+ C2

0

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2C0

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj
− θ0 · βXj

− rj) · uj

σ2
Yj

∣∣+ 2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj
− θ0 · βXj

− rj) · νj
σ2
Yj

∣∣
+ 2C0

∣∣ ∑
j∈V∗

νjuj

σ2
Yj

∣∣+ ∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈Vλ

νjuj

σ2
Yj

∣∣)
= P(C(V∗)).

We also have

δ(V∗) =
∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

−κn·(v∗−vλ) ≥
∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

≥
∑
j∈V∗

r2j
σ2
Yj

·(1−c0).

This is because v∗ < vλ and κn · (v∗ − vλ) < 0.

Then the probability P(C(V∗)) is bounded by

P
(∣∣ ∑

j∈V∗

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1− c0
10

∑
j∈V∗

r2j
σ2
Yj

)
+ P

(∣∣ ∑
j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1− c0
10

∑
j∈V∗

r2j
σ2
Yj

)

+ P
(∣∣ ∑

j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1− c0
10

∑
j∈V∗

r2j
σ2
Yj

)
+ P

(∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1− c0
10

∑
j∈V∗

r2j
σ2
Yj

)

+ P
(∣∣ ∑

j∈V∗

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ 1− c0
10

∑
j∈V∗

r2j
σ2
Yj

)
+ P

(∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ 1− c0
10

∑
j∈V∗

r2j
σ2
Yj

)
+ P

(
2
∣∣ ∑
j∈Vλ

νjuj
σ2
Yj

∣∣ ≥ 1− c0
10

∑
j∈V∗

r2j
σ2
Yj

)
+ P

(
2
∣∣ ∑
j∈V∗

νjuj
σ2
Yj

∣∣ ≥ 1− c0
10

∑
j∈V∗

r2j
σ2
Yj

)

+ P
(
2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣ ≥ 1

10

∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

)

+ P
(
2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

∣∣ ≥ 1

10

∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

)
.
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Knowing that

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

∣∣ ≤
√√√√∑

j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj)2

σ2
Yj

√√√√∑
j∈V∗

u2j
σ2
Yj

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣ ≤
√√√√∑

j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj)2

σ2
Yj

√√√√∑
j∈V∗

ν2j
σ2
Yj

We can similarly show that there exists a c′′ > 0 such that the last two terms are further bounded

by

P
( ∑
j∈V∗

ν2j
σ2
Yj

≥ c′′
∑
j∈V∗

r2j
σ2
Yj

)
+ P

( ∑
j∈V∗

u2j
σ2
Yj

≥ c′′
∑
j∈V∗

r2j
σ2
Yj

)
.

Using Lemma 1, we know that there exists a c′ > 0 such that all these terms are bounded by

2 · e−c
′·min

{
v∗2·r2λ(V

∗)
vλ

, v∗·r2λ(V
∗), v∗·rλ(V∗)

}
.

To prove e(sλ+1)·ln(sλ) ·P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)
→ 0 for any V∗ such that

c1 · vλ ≤ |V∗| < vλ but ρ(V∗) < 1, we only need to show

2e(sλ+1)·ln(sλ) · e
−c′·min

{
v∗·r2λ(V

∗), v∗·rλ(V∗),
v∗2·r2λ(V

∗)
vλ

}
→ 0.

Knowing that |V∗| < vλ, it suffices to show that

2e(sλ+1)·ln(sλ) · e
−c′·min

{
v∗·rλ(V∗),

v∗2·r2λ(V
∗)

vλ

}
→ 0.

We prove this formula in Lemma 2 and conclude that

e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)
→ 0.

uniformly for all V∗ ⊆ Sλ such that c1 · vλ ≤ |V∗| < vλ but ρ(V∗) < 1.
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S.5.4.3 Case 3: When |V∗| = v∗ < c1 · vλ

When v∗ < c1 · vλ, we decompose h(V∗, θ̂(V∗)) in a different way,

h(V∗, θ̂(V∗)) =
∑
j∈V∗

(β̂Yj − θ̂(V∗) · β̂Xj,RB)2

σ2
Yj

− θ̂(V∗)2
∑
j∈V∗

σ̂2
Xj,RB

σ2
Yj

=
∑
j∈V∗

(β̂Yj − θ̂(V∗) · β̂Xj,RB)2

σ2
Yj

− θ̂(V∗)2
∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− θ̂(V∗)2
∑
j∈V∗

σ2
Xj,RB

σ2
Yj

.

Under Condition 4, there exists a C0 > 0 such that

P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)

≤ P
( ∑

j∈V∗

(β̂Yj
− θ̂(V∗) · β̂Xj,RB

)2

σ2
Yj

+ κn · (vλ − v∗) ≤ θ̂(V∗)2
∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

σ2
Xj,RB

σ2
Yj

+
∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

+ θ20
∑
j∈Vλ

u2
j − σ2

Xj,RB

σ2
Yj

− θ20
∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− 2θ0
∑
j∈Vλ

νjuj

σ2
Yj

)
≤ P

( ∑
j∈V∗

(β̂Yj − θ̂(V∗) · β̂Xj,RB)
2

σ2
Yj

+ κn · (vλ − v∗) ≤ C2
0

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ C2
0 · v∗

+
∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈Vλ

νjuj

σ2
Yj

∣∣)
≤ P

(
κn · (vλ − v∗)− C2

0 · v∗ ≤ C2
0

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ ∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣
+ θ20

∣∣ ∑
j∈Vλ

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈Vλ

νjuj

σ2
Yj

∣∣).
Denote the event

κn · (vλ − v∗)− C2
0 · v∗ ≤ C2

0 ·
∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ ∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣
+ θ20 ·

∣∣ ∑
j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣+ θ20 ·
∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0 ·
∣∣ ∑
j∈Vλ

νjuj
σ2
Yj

∣∣
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as D(V∗), we have

D(V∗) ⊆

θ20 ·
∣∣ ∑
j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

5
· (κn · (vλ − v∗)− C2

0 · v∗)


⋃2θ0 ·

∣∣ ∑
j∈Vλ

νjuj
σ2
Yj

∣∣ ≥ 1

5
· (κn · (vλ − v∗)− C2

0 · v∗)


⋃θ20 ·

∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

5
· (κn · (vλ − v∗)− C2

0 · v∗)


⋃∣∣ ∑

j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ 1

5
· (κn · (vλ − v∗)− C2

0 · v∗)


⋃C2

0 ·
∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

5
· (κn · (vλ − v∗)− C2

0 · v∗)

 .

Using v∗ < c1 · vλ and Condition 7, we know that there must be a c′′′ > 0 such that

κn · (vλ − v∗)− C2
0 · v∗ ≥ κn · (1− c1) · vλ − C2

0 · v∗ ≥ c′′′ · κn · vλ.

then the probability P(D(V∗)) is bounded by

P
(
θ20 ·

∣∣ ∑
j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ c′′′

5
· κn · vλ

)
+ P

(
C2
0 ·
∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ c′′′

5
· κn · vλ

)

+ P
(
θ20 ·

∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ c′′′

5
· κn · vλ

)
+ P

(
2θ0 ·

∣∣ ∑
j∈Vλ

νjuj
σ2
Yj

∣∣ ≥ c′′′

5
· κn · vλ

)

+ P
(∣∣ ∑

j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ c′′′

5
· κn · vλ

)
.

Using Lemma 1, we know that there exists a c′ > 0 such that the these five terms are bounded by

2·e−c
′·min

{
κ2nvλ,

κ2nv
2
λ

v∗ , κn·vλ
}
. To prove e(sλ+1)·ln(sλ) ·P

(
min
θ∈R

h(V∗, θ)−κn ·v∗ ≤ h(Vλ, θ0)−κn ·vλ
)
→

0, we only need to show

2e(sλ+1)·ln(sλ) · e−c′·κn·vλ → 0.
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We can prove this by Lemma 3 and conclude that e(sλ+1)·ln(sλ) ·P
(
min
θ∈R

h(V∗, θ)−κn ·v∗ ≤ h(Vλ, θ0)−

κn · vλ
)
→ 0 uniformly for all V∗ ⊆ Sλ such that v∗ < c1 · vλ.

Therefore, we conclude that e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ) − κn · v∗ ≤ h(Vλ, θ0) − κn · vλ
)
→ 0

uniformly for all V∗ ⊆ Sλ such that V∗ ̸= Vλ.

S.5.5 Proof of Perfect Screening Property

Following the similar procedure in Section 3.4, for any V ⊂ Sλ, we denote a function

h(V, θ) =
∑
j∈V

(β̂Yj − θ · β̂Xj,RB)2 − θ2 · σ̂2
Xj,RB

σ2
Yj

.

and show

P(V̂λ ̸= Vλ) ≤ e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)
.

where V∗ = argmax
V̸=Vλ

e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V, θ)− κn · |V| ≤ h(Vλ, θ0)− κn · vλ
)
and v∗ = |V∗|.

As long as we show that

e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)
→ 0.

then P(V̂λ ̸= Vλ)→ 0 holds.

To prove it, we discuss V∗ in two different cases.

• |V∗| = v∗ ≥ vλ and V∗ ̸= Vλ,

• |V∗| = v∗ < vλ.

In each case, we show e(sλ+1)·ln(sλ) ·P
(
min
θ∈R

h(V∗, θ)−κn ·v∗ ≤ h(Vλ, θ0)−κn ·vλ
)
→ 0 and therefore

P(V̂λ ̸= Vλ)→ 0 holds.

S.5.5.1 Case 1: |V∗| = v∗ ≥ vλ and V∗ ̸= Vλ

The proof of this section is the same as the one in Section 3.4.1.
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S.5.5.2 Case 2: When |V∗| = v∗ < vλ

When v∗ < vλ, following the proof in Section 3.4.3, we show

P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)

≤ P
(
κn · (vλ − v∗)− C2

0 · v∗ ≤ C2
0

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ ∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣
+ θ20

∣∣ ∑
j∈Vλ

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈Vλ

νjuj

σ2
Yj

∣∣)
= P(D(V∗)).

Where D(V∗) is the event

κn · (vλ − v∗)− C2
0 · v∗ ≤ C2

0 ·
∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ ∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣
+ θ20 ·

∣∣ ∑
j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣+ θ20 ·
∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0 ·
∣∣ ∑
j∈Vλ

νjuj
σ2
Yj

∣∣.
We have

D(V∗) ⊆

θ20 ·
∣∣ ∑
j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

5
· (κn · (vλ − v∗)− C2

0 · v∗)


⋃2θ0 ·

∣∣ ∑
j∈Vλ

νjuj
σ2
Yj

∣∣ ≥ 1

5
· (κn · (vλ − v∗)− C2

0 · v∗)


⋃θ20 ·

∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

5
· (κn · (vλ − v∗)− C2

0 · v∗)


⋃∣∣ ∑

j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ 1

5
· (κn · (vλ − v∗)− C2

0 · v∗)


⋃C2

0 ·
∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

5
· (κn · (vλ − v∗)− C2

0 · v∗)

 .

Using v∗ < vλ and Condition 7∗, we know that there must be a c′′′ > 0 such that

κn · (vλ − v∗)− C2
0 · v∗ ≥ κn − C2

0 · v∗ ≥ c′′′ · κn.
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then the probability P(D(V∗)) is bounded by

P
(
θ20 ·

∣∣ ∑
j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ c′′′

5
· κn

)
+ P

(
C2
0 ·
∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ c′′′

5
· κn

)

+ P
(
θ20 ·

∣∣ ∑
j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ c′′′

5
· κn

)
+ P

(
2θ0 ·

∣∣ ∑
j∈Vλ

νjuj
σ2
Yj

∣∣ ≥ c′′′

5
· κn

)

+ P
(∣∣ ∑

j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ c′′′

5
· κn

)
.

Using Lemma 1, we know that there exists a c′ > 0 such that the these five terms are bounded by

2 · e−c
′·min

{
κ2n
vλ
,
κ2n
v∗ , κn

}
. To prove e(sλ+1)·ln(sλ) ·P

(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(Vλ, θ0)− κn · vλ
)
→ 0,

we only need to show

2e(sλ+1)·ln(sλ) · e−c
′·min

{
κ2n
vλ
,
κ2n
v∗ , κn

}
= 2e(sλ+1)·ln(sλ) · e−c

′·min
{
κ2n
vλ
, κn
}
→ 0.

We can prove this by Lemma 3 and conclude that e(sλ+1)·ln(sλ) ·P
(
min
θ∈R

h(V∗, θ)−κn ·v∗ ≤ h(Vλ, θ0)−

κn · vλ
)
→ 0 uniformly for all V∗ ⊆ Sλ such that v∗ < vλ.

Therefore, we conclude that e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ) − κn · v∗ ≤ h(Vλ, θ0) − κn · vλ
)
→ 0

uniformly for all V∗ ⊆ Sλ such that V∗ ̸= Vλ.

S.5.6 Lemmas

Lemma 1 Under Condition 1,

P
(∣∣ ∑

j∈Vλ

νjuj
σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

vλ
, t
}
, P

(∣∣∑
j∈V

νjuj
σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

v∗ , t
}

P
(∣∣ ∑

j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

vλ
, t
}
, P

(∣∣∑
j∈V

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

v∗ , t
}

P
(∣∣ ∑

j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

vλ
, t
}
, P

(∣∣∑
j∈V

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

v∗ , t
}
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P
(∣∣ ∑

j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

vλ
, t
}
, P

(∣∣∑
j∈V

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

v∗ , t
}

Lemma 2 Under Condition 2, 5 and 6, we have

ln(sλ)

rλ(V)
→ 0, and

ln(sλ)

r2λ(V)
→ 0.

uniformly holds for |V| ≥ c1 · vλ and V ≠ Vλ.

Therefore, when |V| ≥ vλ and V ≠ Vλ, we have

2e(sλ+1)·ln(sλ) · e−c′·min{v·r2λ(V), v·rλ(V)} → 0.

When c1 · vλ ≤ |V| < vλ and V ≠ Vλ, we have

2e(sλ+1)·ln(sλ) · e
−c·min

{
v·rλ(V),

v2·r2λ(V)

vλ

}
→ 0.

Lemma 3 Under Condition 6 and 7,

ln(sλ)

κn
→ 0,

Therefore we have

2e(sλ+1)·ln(sλ) · e−c′·κn·vλ → 0.

Furthermore, under Condition 6 and Condition 7∗, which is a stronger condition of κn, we have

2e(sλ+1)·ln(sλ) · e−c
′·min

{
κ2n
vλ
, κn
}
→ 0.
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S.5.7 Proof of Lemmas

S.5.7.1 Proof of Lemma 1

We first prove uj is a sub-Gaussian random variable. We know from the definition that the n-th

moment of uj conditional on selection is

E[unj |Sj > 0] =
σnXj

P[Sj > 0]

∫ ∞

−∞

(
y − 1

ηj

ϕ (Bj,+(y))− ϕ (Bj,−(y))

1− Φ (Bj,+(y)) + Φ (Bj,−(y))

)n
ϕ (y) [1− Φ (Bj,+(y)) + Φ (Bj,−(y))] dy.

where

P[Sj > 0] = Φ

−λ+
βXj
σXj√

1 + η2j

+Φ

−λ−
βXj
σXj√

1 + η2j

 .

and

Bj,±(y) = −
(

βXj
σXjηj

+
y

ηj

)
± λ

ηj
.

Given that the calculations can be quite involved, we let ηj = 1 and γj = 0 to streamline the

presentation. That is, we consider

E[unXj |Sj > 0]

σnXj
=

1

P[Sj > 0]

∫ ∞

−∞

(
y − ϕ (−λ+ y)− ϕ (−λ− y)

Φ (−λ+ y) + Φ (−λ− y)

)n
ϕ (y)

[
Φ (−λ+ y) + Φ (−λ− y)

]
dy.

Here

P[Sj > 0] = 2 · Φ
(
−λ√
2

)
.

Then when n is an odd number,
E[unXj |Sj>0]

σnXj
= 0. When n is an even number, we have

E[unXj |Sj > 0]

σnXj
=

2

P[Sj > 0]

∫ ∞

0

(
y − ϕ (−λ+ y)− ϕ (−λ− y)

Φ (−λ+ y) + Φ (−λ− y)

)n
ϕ (y)

[
Φ (−λ+ y) + Φ (−λ− y)

]
dy.
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ϕ (−λ+ y)− ϕ (−λ− y)

Φ (−λ+ y) + Φ (−λ− y)
≤ ϕ (−λ+ y)− ϕ (−λ− y)

Φ (−λ) + Φ (−λ)
≤ ϕ (−λ+ y)

Φ (−λ) + Φ (−λ)
≤ 1/

√
2π

Φ (−λ) + Φ (−λ)
.

E[unXj |Sj > 0]

σnXj
=

2

P[Sj > 0]

∫ 1/
√
2π

Φ(−λ)+Φ(−λ)

0

(
y − ϕ (−λ+ y)− ϕ (−λ− y)

Φ (−λ+ y) + Φ (−λ− y)

)n
ϕ (y)

[
Φ (−λ+ y) + Φ (−λ− y)

]
dy

+
2

P[Sj > 0]

∫ ∞

1/
√
2π

Φ(−λ)+Φ(−λ)

(
y − ϕ (−λ+ y)− ϕ (−λ− y)

Φ (−λ+ y) + Φ (−λ− y)

)n
ϕ (y)

[
Φ (−λ+ y) + Φ (−λ− y)

]
dy

≤ 2

P[Sj > 0]

∫ 1/
√
2π

Φ(−λ)+Φ(−λ)

0

(
1/
√
2π

Φ (−λ) + Φ (−λ)

)n
ϕ (y)

[
Φ (−λ+ y) + Φ (−λ− y)

]
dy

+
2

P[Sj > 0]

∫ ∞

1/
√
2π

Φ(−λ)+Φ(−λ)

ynϕ (y)
[
Φ (−λ+ y) + Φ (−λ− y)

]
dy

≤ 2

P[Sj > 0]

∫ ∞

0

(
1/
√
2π

Φ (−λ) + Φ (−λ)

)n
ϕ (y)

[
Φ (−λ+ y) + Φ (−λ− y)

]
dy

+
2

P[Sj > 0]

∫ ∞

0
ynϕ (y)

[
Φ (−λ+ y) + Φ (−λ− y)

]
dy

= 2

(
1/
√
2π

Φ (−λ) + Φ (−λ)

)n
+

2

P[Sj > 0]

∫ ∞

0
ynϕ (y)

[
Φ (−λ+ y) + Φ (−λ− y)

]
dy

≤

(
1/
√
2π

Φ (−λ) + Φ (−λ)

)n
+

1

P[Sj > 0]

∫ ∞

−∞
ynϕ (y) dy.

Then by the property of sub-Gaussian random variable, we know that there exists a K such

that

(∫ ∞

−∞
ynϕ (y) dy

) 1
n ≤ K

√
n.

for any n ≥ 1.

E[unXj |Sj > 0]

σnXj
≤

(
1/
√
2π

Φ (−λ) + Φ (−λ)

)n
+

1

2 · Φ
(
−λ√
2

) ·Kn · n
n
2 .

Then we can know that there exists a K ′ > 0 such that

(E[unXj |Sj > 0]

σnXj

) 1
n ≤ K ′ ·

√
n.
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for any n ≥ 1.

This proves that conditional on re-randomized selection, uj is a sub-Gaussian random variable.

Since νj is a Gaussian random variable, it’s also a sub-Gaussian random variable. Then we know

νjuj , u
2
j and ν2j are all subexponential random variables.

Also we know from Condition 1 that
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

is a sub-exponential random variable.

Then by Bernstein’s inequality, we have

P
(∣∣ ∑

j∈Vλ

νjuj
σ2
Yj

∣∣ ≥ t
)
≤ 2 · e

−c·min
(

t2∑
j∈Vλ

||
νjuj

σ2
Yj

||2
ψ1

, t

maxi ||
νjuj

σ2
Yj

||ψ1

)

≤ 2 · e
−c·min

(
t2∑

j∈Vλ
||
νj
σYj

||2
ψ2

·||
uj
σYj

||2
ψ2

, t

maxi

√
||
νj
σYj

||2
ψ2

·||
uj
σYj

||2
ψ2

)
.

P
(∣∣∑

j∈V

νjuj
σ2
Yj

∣∣ ≥ t
)
≤ 2 · e

−c·min
(

t2∑
j∈V

||
νjuj

σ2
Yj

||2
ψ1

, t

maxi ||
νjuj

σ2
Yj

||ψ1

)

≤ 2 · e
−c·min

(
t2∑

j∈V
||
νj
σYj

||2
ψ2

·||
uj
σYj

||2
ψ2

, t

maxi

√
||
νj
σYj

||2
ψ2

·||
uj
σYj

||2
ψ2

)
.

P
(∣∣ ∑

j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e

−c·min
(

t2

∑
j∈Vλ

||
ν2
j
−σ2

Yj

σ2
Yj

||2
ψ1

, t

maxi ||
ν2
j
−σ2

Yj

σ2
Yj

||ψ1

)

≤ 2 · e

−c·min
(

t2

∑
j∈Vλ

||

√√√√√√ ν2
j
−σ2

Yj

σ2
Yj

||4
ψ2

, t

maxi ||

√√√√√√ ν2
j
−σ2

Yj

σ2
Yj

||2
ψ2

)
.

P
(∣∣∑

j∈V

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e

−c·min
(

t2

∑
j∈V

||
ν2
j
−σ2

Yj

σ2
Yj

||2
ψ1

, t

maxi ||
ν2
j
−σ2

Yj

σ2
Yj

||ψ1

)

≤ 2 · e

−c·min
(

t2

∑
j∈V

||

√√√√√√ ν2
j
−σ2

Yj

σ2
Yj

||4
ψ2

, t

maxi ||

√√√√√√ ν2
j
−σ2

Yj

σ2
Yj

||2
ψ2

)
.
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P
(∣∣ ∑

j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e

−c·min
(

t2

∑
j∈Vλ

||
u2
j
−σ2

Xj,RB

σ2
Yj

||2
ψ1

, t

maxi ||
u2
j
−σ2

Xj,RB

σ2
Yj

||ψ1

)

≤ 2 · e

−c·min
(

t2

∑
j∈Vλ

||

√√√√√√u2
j
−σ2

Xj,RB

σ2
Yj

||4
ψ2

, t

maxi ||

√√√√√√u2
j
−σ2

Xj,RB

σ2
Yj

||2
ψ2

)
.

P
(∣∣∑

j∈V

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e

−c·min
(

t2

∑
j∈V

||
u2
j
−σ2

Xj,RB

σ2
Yj

||2
ψ1

, t

maxi ||
u2
j
−σ2

Xj,RB

σ2
Yj

||ψ1

)

≤ 2 · e

−c·min
(

t2

∑
j∈V

||

√√√√√√u2
j
−σ2

Xj,RB

σ2
Yj

||4
ψ2

, t

maxi ||

√√√√√√u2
j
−σ2

Xj,RB

σ2
Yj

||2
ψ2

)
.

P
(∣∣ ∑

j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e

−c·min
(

t2

∑
j∈Vλ

||
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

||2
ψ1

, t

maxi ||
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

||ψ1

)

≤ 2 · e

−c·min
(

t2

∑
j∈Vλ

||

√√√√√√ σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

||4
ψ2

, t

maxi ||

√√√√√√ σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

||2
ψ2

)
.

P
(∣∣∑

j∈V

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e

−c·min
(

t2

∑
j∈V

||
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

||2
ψ1

, t

maxi ||
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

||ψ1

)

≤ 2 · e

−c·min
(

t2

∑
j∈V

||

√√√√√√ σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

||4
ψ2

, t

maxi ||

√√√√√√ σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

||2
ψ2

)
.

Under Condition 1, we can have the conclusion in Lemma 1.

P
(∣∣ ∑

j∈Vλ

νjuj
σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

vλ
, t
}
, P

(∣∣∑
j∈V

νjuj
σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

v∗ , t
}
.
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P
(∣∣ ∑

j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

vλ
, t
}
, P

(∣∣∑
j∈V

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

v∗ , t
}
.

P
(∣∣ ∑

j∈Vλ

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

vλ
, t
}
, P

(∣∣∑
j∈V

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

v∗ , t
}
.

P
(∣∣ ∑

j∈Vλ

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

vλ
, t
}
, P

(∣∣∑
j∈V

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ t
)
≤ 2 · e−c·min

{
t2

v∗ , t
}
.

S.5.7.2 Proof of Lemma 2

Proof. Without loss of generality, we can assume that σ2
Yj

= 1
n , then we have

rλ(V) =
1

v

∑
j∈V

r2j
σ2
Yj

≥ 1

v
· n min

j∈Sλ, rj ̸=0
r2j .

Under Condition 5, we have

ln(sλ)

rλ(V)
=

v · ln(sλ)
n min
j∈Sλ, rj ̸=0

r2j
≤ sλ · ln(sλ)

n min
j∈Sλ, rj ̸=0

r2j
→ 0.

ln(sλ)

r2λ(V)
≤ ln(sλ) · v2

n2 min
j∈Sλ, rj ̸=0

r4j
≤

s2λ · ln(sλ)
n2 min

j∈Sλ, rj ̸=0
r4j
→ 0.

Notice that when |V| ≥ vλ and V ≠ Vλ, under Condition 6, we have

(sλ + 1) · ln(sλ)
v · rλ(V)

≤ (sλ + 1) · ln(sλ)
vλ · rλ(V)

→ 0,
(sλ + 1) · ln(sλ)

v · r2λ(V)
≤ (sλ + 1) · ln(sλ)

vλ · r2λ(V)
→ 0.

Then we can show

2e(sλ+1)·ln(sλ) · e−c′·min{v·r2λ(V), v·rλ(V)} → 0.
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Notice that when c1 · vλ ≤ |V| < vλ and V ≠ Vλ, under Condition 6, we have

(sλ + 1) · ln(sλ)
v · rλ(V)

≤ (sλ + 1) · ln(sλ)
c1 · vλ · rλ(V)

→ 0,
(sλ + 1) · ln(sλ) · vλ

v2 · r2λ(V)
≤ (sλ + 1) · ln(sλ)

c21 · vλ · r2λ(V)
→ 0.

Then we can show

2e(sλ+1)·ln(sλ) · e
−c·min

{
v·rλ(V),

v2·r2λ(V)

vλ

}
→ 0.

■

S.5.7.3 Proof of Lemma 3

Proof. Under Condition 6 and 7 , we know that

κn ≫ ln(sλ), and
vλ
sλ

is bounded away from 0.

Then

(sλ + 1) · ln(sλ)
κn · vλ

→ 0.

Then we know

2e(sλ+1)·ln(sλ) · e−c′κn·vλ → 0.

Under Condition 6 and Condition 7∗, we have

(sλ + 1) · ln(sλ)
κn

→ 0.

Then we know

2e(sλ+1)·ln(sλ) · e−c
′·min

{
κ2n
vλ
, κn
}
→ 0.
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■

S.6 An example that Assumption S3 is satisfied without perfect

screening

S.6.1 Main results

With a slight abuse of notation, we consider a special case where the instruments can be divided

into three clusters:

V1 =
{
j : rj = 0, βXj = β0

}
with |V1| = v1,

V2 =
{
j : rj = r2, βXj = β0

}
with |V2| = v2,

V3 =
{
j : rj = r3, βXj = β0

}
with |V3| = v3.

Here, V1 represents the set of valid IVs with rj = 0, and V2 represents the set of invalid IVs

with vanishing pleiotropic effects with r2 tending to zero at an appropriate rate (see Lemma 5

and Theorem S3 for its precise characterization), and V3 represents the set of invalid IVs with

non-vanishing pleiotropic effects. We note that it is not necessary to restrict all βXj ’s to have

the same magnitude, and our results presented in this section can be extended to cases where the

standardized IV strength lies in a neighborhood of β0/σXj , in the sense that
βXj
σXj
∈
[
β0
σXj
± δ × β0

σXj

]
with δ tending to zero.

To further simplify our theoretical derivation, we consider σ2
Yj

= 1
n for all j ∈ Sλ. Next, for any

subset V ⊆ Sλ, we further define the following quantities:

p1(V) =
|V1 ∩ V|
|V|

, p2(V) =
|V2 ∩ V|
|V|

, p3(V) =
|V3 ∩ V|
|V|

.

Lastly, we denote An =
(
ln(sλ) ∨ κn

)
·
√
sλ/n.

In what follows, we will argue that to satisfy Assumption 3, our invalid IV screening proce-

dure does not need to have a perfect screening property. In other words, our estimator remains

asymptotically unbiased even if our IV screening procedure does not select V1 with probability

approaching one. As shall be made clear in Lemma 4 and Lemma 5, our method avoids the need
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for perfect IV screening by showing that the selected IV set V̂ can include both invalid IVs from

V2 and a vanishing portion of invalid IVs from V3 in the selected set V̂.

We impose the following conditions:

Condition 8 (The order of the number of valid IVs) The number of valid IVs v1 is of the

same order as sλ. For the number of invalid IVs, there exists a positive constant c1 ∈ (0, 1) such

that (v2/v1 ∨ v3/v1) ≤ c1.

The above condition requires that the majority of the IVs included in MR are valid IVs. The next

condition is needed so that our optimization problem does not suffer from potential over-fitting

issues in high-dimensional settings:

Condition 9 (High-dimensional BIC) κn ≫ ln(sλ).

Next, for any given ε > 0, define a collection of sets

Vbias(ε) =V(ε) ∪ VBIC

=

{
V
∣∣∣V ⊆ Sλ, p3(V) ≥ ε

√
nsλ · r3

}⋃{
V
∣∣∣V ⊆ Sλ, |V| = v <

1 + c1
2
· v1
}
.

Vbias(ε) is a union of two types of sets that will be screened out by our invalid IV screening

procedure. The first set V(ε) consists of all possible sets with a non-vanishing proportion of IVs in

V3, defined by the condition p3(V) ≥ ε√
nsλ·r3 . Consequently, if our selected set V̂ belongs to V(ε),

the resulting causal effect estimator is biased. The second set VBIC comprises all sets containing a

total number of IVs smaller than v1. As our IV screening procedure adopts l0 penalty with BIC to

screen out invalid IVs, our selected set V̂ tends to select an IV set with cardinality larger than v1.

Therefore, V̂ does not belong to VBIC as well. The following lemma provides rigorous statement

about our selected IV set V̂:

Lemma 4 For any given ε > 0, if r3 is sufficiently large in the sense that An/(r3ε) = o(1) and

|θ̂(V)| is bounded by a constant for all V ∈ Sλ, then under Condition 1, 2, 8 and 9, the selected IV

set V̂ using our procedure satisfies P(V̂ ∈ Vbias(ε))→ 0.

Next, we demonstrate that when r2 tends to zero at an appropriate rate and β0 are sufficiently

large, for the set V that does not fall into Vbias(ε), the bias term described in Assumption 3 is

asymptotically negligible:
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Lemma 5 We choose aλ ≍ sλ · κλ = nsλ · β2
0 to stabilize the variance (other choices for aλ can

also be adopted). For any given ε > 0, whenever r2 < ε√
nsλ

and r3
β2
0ε·

√
nsλ

= o(1), under Condition

1 and 2, we have

| aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

| = Op(ε).

for any V /∈ Vbias(ε).

In Lemma 5, ε can tend to zero at different rates, each affecting the conditions on r2, r3, and

β0 differently. To cast some insights into this result, we consider a simple example. For a positive

constant δ, we let

ε =
1

lnδ(sλ)
= o(1), κn = ln1+δ(sλ)≫ ln(sλ), r3 = ln1+3δ(sλ) ·

√
sλ
n
.

If r2 and β0 satisfy

r2 <
1

lnδ(sλ) ·
√
nsλ

, β0 ≫

√
ln1+4δ(sλ)

n
,

the conditions of Lemma 5 are met. Here, the above requirement on the magnitude of β0 is rather

mild, as the selected IV strength in Sλ typically has an order greater than
√

log p/n, since the

cut-off value λ is often of the order
√
log p. In practice, since relevant IVs often constitute only a

small fraction of all candidate IVs, sλ should be a term of smaller order compared to p. Therefore,

the condition β0 ≫
√
ln1+4δ(sλ)/n that we impose here is rather mild.

With these two lemmas, we are ready to show that the set V̂ selected by our proposed invalid

screening procedure induces negligible bias:

Theorem S3 For a vanishing number ε > 0, we assume that

(i) r3 is sufficiently large in the sense that An/(r3ε) = o(1), which ensures our invalid screening

procedure to effectively screen out IVs from V3.

(ii) r2 is a vanishing number in the sense that r2 < ε√
nsλ

, which ensures IVs from V2 to have

vanishing pleiotrophic effects.

(iii) β0 is sufficiently large in the sense that
√
sλln(sλ)√

n
r3
εβ2

0
→ 0.
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If |θ̂(V)| is bounded by a constant for all V ∈ Sλ, under Condition 1, 2, 8 and 9, choosing aλ ≍

sλ · κλ = nsλ · β2
0 to stabilize the variance, we can prove that

aλ√
sλ · κλ

·
∑

j∈V̂ rj · β̂Xj,RB∑
j∈V̂ β̂2

Xj,RB
− σ̂2

Xj,RB

= op(1).

We note that the third condition in the above theorem is slightly stronger than what was

assumed in Lemma 6, as we applied a union bound, needed to account for uniformity across all

possible subsets of Sλ. The conditions we impose here are sufficient but by no means necessary.

S.6.2 Proof of Theorem S3

For any given ε > 0, we have

aλ√
sλ · κλ

·
∑

j∈V̂ rj · β̂Xj,RB∑
j∈V̂ β̂2

Xj,RB
− σ̂2

Xj,RB

=
∑

V∈Vbias(ε)

aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

· 1(V̂ = V)

+
∑

V /∈Vbias(ε)

aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

· 1(V̂ = V)

For any ε0 > 0, the first term in the right hand side can be bounded using the following

inequality:

P(|
∑

V∈Vbias(ε)

aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

· 1(V̂ = V)| > ε0) ≤ P(∪V∈Vbias(ε){V̂ = V}) = P(V̂ ∈ Vbias(ε))

By using the result in Lemma 4 and letting ε0 → 0, we are able to show

∑
V∈Vbias(ε)

aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

· 1(V̂ = V) = op(1).

Thus it suffices to show that the second term on the right-hand side satisfies

∑
V /∈Vbias(ε)

aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

· 1(V̂ = V) = op(1).
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In Lemma 5, we show that under the event A(V, ε), we have

| aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

| < 9ε

for any given V /∈ Vbias(ε).

Under the event
⋂

V /∈Vbias(ε)
A(V, ε), we can show that this holds uniformly for all V /∈ Vbias(ε).

Thus we have

∑
V /∈Vbias(ε)

aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

· 1(V̂ = V) < 9ε.

We also notice that

P
( ⋂

V /∈Vbias(ε)

A(V, ε)
)
= 1− P

( ⋃
V /∈Vbias(ε)

AC(V, ε)
)
≥ 1−

∑
V /∈Vbias(ε)

P
(
AC(V, ε)

)

Here AC(V, ε) is the complement of the event A(V, ε).

To prove P
(⋂

V /∈Vbias(ε)
A(V, ε)

)
→ 1, we only need to show

∑
V /∈Vbias(ε)

P
(
AC(V, ε)

)
≤ e(sλ+1)·ln(sλ) max

V /∈Vbias(ε)
P
(
AC(V, ε)

)
→ 0.

In Lemma 5, we have P(A(V, ε)) ≥ 1−2·e−
c
16
n·v·β2

0−4·e−c·min{ 1
16

·n2·vβ4
0 ,

1
4
·n·vβ2

0}−2·e
−c·ε2·β20

p2(V)r22+p3(V)r23

v
16sλ ,

thus P(AC(V, ε)) < 2 · e−
c
16
n·v·β2

0 + 4 · e−c·min{ 1
16

·n2·vβ4
0 ,

1
4
·n·vβ2

0} + 2 · e
−c·ε2·β20

p2(V)r22+p3(V)r23

v
16sλ . In addition,

we have v > 1+c1
2 · v1 for any V /∈ Vbias(ε). Under Condition 8, we have v ≍ sλ uniformly hold for

any V /∈ Vbias(ε).

With these results, we can prove e(sλ+1)·ln(sλ)maxV /∈Vbias(ε) P
(
AC(V, ε)

)
→ 0 if we have

√
sλln(sλ)√

n
r3
εβ2

0
→

0 and r2 <
ε√
nsλ

.

When ε is a vanishing number, we can show

∑
V /∈Vbias(ε)

aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

· 1(V̂ = V) = op(1).
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Thus,

aλ√
sλ · κλ

·
∑

j∈V̂ rj · β̂Xj,RB∑
j∈V̂ β̂2

Xj,RB
− σ̂2

Xj,RB

= op(1).

Therefore, although our selection procedure does not have perfect screening properties, the set

that we select still has negligible bias.

S.6.3 Proof of Lemma 4

For any V ⊆ Sλ, we denote a collection of sparse vectors

Rv =
{
a ∈ R|Sλ|×1 : aj = 0, for j ∈ V, ak ̸= 0, for k ∈ Vc

}

and a function

h(V, θ) = min
r∈Rv

∑
j∈Sλ

l̂
(
θ, r; β̂Yj , σYj , β̂Xj,RB , σ̂Xj,RB

)

=
∑
j∈V

(β̂Yj − θ · β̂Xj,RB)2 − θ2 · σ̂2
Xj,RB

σ2
Yj

.

For any given ε > 0, we define the set Vbias(ε) = {V|V ⊆ Sλ, p3(V) ≥ ε√
nsλ·r3 } ∪ {V|V ⊆

Sλ, |V| = v < 1+c1
2 · v1}. Now we want to analyze P(V̂ ∈ Vbias(ε)) by utilizing the following
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inequality:

P(V̂ ∈ Vbias(ε)) ≤ P
(

min
v∈N+,v≤sλ

[
min

|V|=v,V∈Vbias(ε)
min
θ∈R

h(V, θ)− κn · v
]
≤ min

θ∈R
h(V1, θ)− κn · v1

)
≤

⋃
V∈Vbias(ε)

P
(
min
θ∈R

h(V, θ)− κn · |V| ≤ min
θ∈R

h(V1, θ)− κn · v1
)

≤
sλ∑
v=1

(
sλ
v

)
max

|V|=v,V∈Vbias(ε)
P
(
min
θ∈R

h(V, θ)− κn · v ≤ h(V1, θ0)− κn · v1
)

≤
sλ∑
v=1

sλ
v max
|V|=v,V∈Vbias(ε)

P
(
min
θ∈R

h(V, θ)− κn · v ≤ h(V1, θ0)− κn · v1
)

≤ max
V∈Vbias(ε)

e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V, θ)− κn · |V| ≤ h(V1, θ0)− κn · v1
)

= e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(V1, θ0)− κn · v1
)
.

(S4)

where V∗ = argmax
V∈Vbias(ε)

e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V, θ)− κn · |V| ≤ h(V1, θ0)− κn · v1
)
and v∗ = |V∗|.

As we show that

e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(V1, θ0)− κn · v1
)
→ 0, (S5)

then P(V̂ ∈ Vbias(ε))→ 0 holds. Here, we also note that the first equation in Eq (S4) follows from

the definition of the optimization problem defined in Equation 2 in the manuscript, the second to

the fifth inequalities in Eq (S4) hold following min
θ∈R

h(V1, θ) ≤ h(V1, θ0),
(
sλ
v

)
≤ svλ and some basic

calculations.

To prove formula (S5), we need to analyze the asymptotic properties of h(V1, θ0), min
θ∈R

h(V∗, θ)

and κn.

We start with h(V1, θ0) and decompose it below following our notation defined in Section S.5.1

h(V1, θ0) =
∑
j∈V1

(β̂Yj − θ0 · βXj )2

σ2
Yj

+ θ20 ·
∑
j∈V1

(β̂Xj,RB − βXj )
2 − σ̂2

Xj,RB

σ2
Yj

− 2θ0 ·
∑
j∈V1

(β̂Yj − θ0 · βXj )(β̂Xj,RB − βXj )

σ2
Yj

=
∑
j∈V1

ν2j
σ2
Yj

+ θ20 ·
∑
j∈V1

u2j − σ̂2
Xj,RB

σ2
Yj

− 2θ0 ·
∑
j∈V1

νjuj
σ2
Yj

. (S6)
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Next, we study the asymptotic property of min
θ∈R

h(V∗, θ). We denote θ̂(V∗) = argmin
θ∈R

h(V∗, θ)

and decompose h(V∗, θ̂(V∗)) in a similar way as h(V1, θ0), following our notation in Section S.5.1.

h(V∗, θ̂(V∗)) =
∑
j∈V∗

(β̂Yj − θ̂(V∗) · βXj )2

σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

(β̂Xj,RB − βXj )
2 − σ̂2

Xj,RB

σ2
Yj

+ 2θ̂(V∗)
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · (β̂Xj,RB − βXj )

σ2
Yj

− 2θ̂(V∗)
∑
j∈V∗

(β̂Yj − θ0 · βXj − rj)(β̂Xj,RB − βXj )

σ2
Yj

=
∑
j∈V∗

(θ0 · βXj + rj + νj − θ̂(V∗) · βXj )2

σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

u2j − σ̂2
Xj,RB

σ2
Yj

+ 2θ̂(V∗)
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

− 2θ̂(V∗)
∑
j∈V∗

νjuj
σ2
Yj

=
∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

+
∑
j∈V∗

ν2j
σ2
Yj

+ 2
∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj ) · νj
σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

u2j − σ̂2
Xj,RB

σ2
Yj

+ 2θ̂(V∗)
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

− 2θ̂(V∗)
∑
j∈V∗

νjuj
σ2
Yj

.

With these decompositions, the Equation (2) can be rewritten as

P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(V1, θ0)− κn · v1
)

= P
( ∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

+ κn · (v1 − v∗) ≤ −
∑
j∈V∗

ν2j
σ2
Yj

− 2
∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj ) · νj
σ2
Yj

− θ̂(V∗)2
∑
j∈V∗

u2j − σ2
Xj,RB

σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− 2θ̂(V∗)
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

+ 2θ̂(V∗)
∑
j∈V∗

νjuj
σ2
Yj

+
∑
j∈V1

ν2j
σ2
Yj

+ θ20
∑
j∈V1

u2j − σ2
Xj,RB

σ2
Yj

− θ20
∑
j∈V1

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− 2θ0
∑
j∈V1

νjuj
σ2
Yj

)
.

By some calculations, we can see that

∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

≥ min
θ∈R

∑
j∈V∗

(θ0 · βXj + rj − θ · βXj )2

σ2
Yj

=
∑
j∈V∗

r2j
σ2
Yj

−
(
∑
j∈V∗

rj ·βXj
σ2
Yj

)2

∑
j∈V∗

β2
Xj

σ2
Yj

.
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with probability 1.

Let

∆(V∗) = 1

v∗
(
∑
j∈V∗

r2j
σ2
Yj

−
(
∑
j∈V∗

rj ·βXj
σ2
Yj

)2

∑
j∈V∗

β2
Xj

σ2
Yj

) ,
∑
j∈V∗

r2j
σ2
Yj

−
(
∑
j∈V∗

rj ·βXj
σ2
Yj

)2

∑
j∈V∗

β2
Xj

σ2
Yj

= v∗ ·∆(V∗).

When V∗ ∈ Vbias(ε) such that |V∗| = v∗ ≥ 1+c1
2 · v1 and V∗ ̸= V1, under Condition 4, there

exists a C0 > 0 such that

P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(V1, θ0)− κn · v1
)

≤ P
( ∑

j∈V∗

(θ0 · βXj
+ rj − θ̂(V∗) · βXj

)2

σ2
Yj

− κn · (v∗ − vλ) ≤ −
∑
j∈V∗

ν2j − σ2
Yj

σ2
Yj

− θ̂(V∗)2
∑
j∈V∗

u2
j − σ2

Xj,RB

σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− 2
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

− 2θ̂(V∗)
∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj

σ2
Yj

+ 2θ̂(V∗)
∑
j∈V∗

νjuj

σ2
Yj

+
∑
j∈V1

ν2j − σ2
Yj

σ2
Yj

+ θ20
∑
j∈V1

u2
j − σ2

Xj,RB

σ2
Yj

− θ20
∑
j∈V1

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− 2θ0
∑
j∈V1

νjuj

σ2
Yj

)
≤ P

( ∑
j∈V∗

(θ0 · βXj
+ rj − θ̂(V∗) · βXj

)2

σ2
Yj

− κn · (v∗ − vλ) ≤
∣∣ ∑
j∈V∗

ν2j − σ2
Yj

σ2
Yj

∣∣+ θ̂(V∗)2
∣∣ ∑
j∈V∗

u2
j − σ2

Xj,RB

σ2
Yj

∣∣
+ 2
∣∣θ̂(V∗)

∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj

σ2
Yj

∣∣+ 2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣+ 2
∣∣θ̂(V∗)

∑
j∈V∗

νjuj

σ2
Yj

∣∣
+ θ̂(V∗)2

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ ∣∣ ∑
j∈V1

ν2j − σ2
Yj

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈V1

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈V1

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈V1

νjuj

σ2
Yj

∣∣)
≤ P

( ∑
j∈V∗

(θ0 · βXj
+ rj − θ̂(V∗) · βXj

)2

σ2
Yj

− κn · (v∗ − vλ) ≤
∣∣ ∑
j∈V∗

ν2j − σ2
Yj

σ2
Yj

∣∣+ C2
0

∣∣ ∑
j∈V∗

u2
j − σ2

Xj,RB

σ2
Yj

∣∣
+ C2

0

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2C0

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj
− θ0 · βXj

− rj) · uj

σ2
Yj

∣∣+ 2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj
− θ0 · βXj

− rj) · νj
σ2
Yj

∣∣
+ 2C0

∣∣ ∑
j∈V∗

νjuj

σ2
Yj

∣∣+ ∣∣ ∑
j∈V1

ν2j − σ2
Yj

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈V1

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈V1

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈V1

νjuj

σ2
Yj

∣∣).
For simplicity, we can assume C0 = 1 and θ0 = 1. We also know that

∑
j∈V∗

(θ0 · βXj
+ rj − θ̂(V∗) · βXj

)2

σ2
Yj

− κn · (v∗ − v1) ≥
∑
j∈V∗

r2j
σ2
Yj

−
(
∑

j∈V∗

rj ·βXj

σ2
Yj

)2

∑
j∈V∗

β2
Xj

σ2
Yj

− κn · (v∗ − v1).
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If we have

κn · (v∗ − v1)

∑
j∈V∗

r2j
σ2
Yj

−
(

∑
j∈V∗

rj ·βXj

σ2
Yj

)2

∑
j∈V∗

β2
Xj

σ2
Yj

=
κn · (v∗ − v1)

v∗∆(V∗)
→ 0. (S7)

uniformly holds, there should be a c such that

∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj

σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

− κn · (v∗ − v1) ≥ c · (
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj

σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

).

We prove the Equation (S7) in Lemma 6.

With this result, the above probability is bounded by

P
(∣∣ ∑

j∈V∗

u2
j − σ2

Xj,RB

σ2
Yj

∣∣ ≥ c

10
(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj

σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

)
)
+ P

(∣∣ ∑
j∈V1

u2
j − σ2

Xj,RB

σ2
Yj

∣∣ ≥ c

10
(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj

σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

)
)

+ P
(∣∣ ∑

j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ c

10
(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj

σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

)
)
+ P

(∣∣ ∑
j∈V1

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ c

10
(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj

σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

)
)

+ P
(∣∣ ∑

j∈V∗

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ c

10
(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj

σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

)
)
+ P

(∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ c

10
(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj

σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

)
)

+ P
(
2
∣∣ ∑
j∈V1

νjuj

σ2
Yj

∣∣ ≥ c

10
(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj

σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

)
)
+ P

(
2
∣∣ ∑
j∈V∗

νjuj

σ2
Yj

∣∣ ≥ c

10
(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj

σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

)
)

+ P
(
2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj
− θ0 · βXj

− rj) · νj
σ2
Yj

∣∣ ≥ 1

10

( ∑
j∈V∗

(θ0 · βXj
+ rj − θ̂(V∗) · βXj

)2

σ2
Yj

− κn · (v∗ − v1)
))

+ P
(
2
∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj

σ2
Yj

∣∣ ≥ 1

10

( ∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )
2

σ2
Yj

− κn · (v∗ − v1)
))

.

Also we have

∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

∣∣ ≤
√√√√∑

j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj)2

σ2
Yj

√√√√∑
j∈V∗

u2j
σ2
Yj
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∣∣ ∑
j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣ ≤
√√√√∑

j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj)2

σ2
Yj

√√√√∑
j∈V∗

ν2j
σ2
Yj

That means there exists a c′′ > 0 such that the last two terms are further bounded by

P
(∣∣ ∑

j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · νj
σ2
Yj

∣∣ ≥ 1

10

( ∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

− κn · (v∗ − v1)
))

≤ P
(√√√√∑

j∈V∗

ν2j
σ2
Yj

≥

1
10

( ∑
j∈V∗

(θ0·βXj+rj−θ̂(V
∗)·βXj )

2

σ2
Yj

− κn · (v∗ − v1)
)

√ ∑
j∈V∗

(θ0·βXj+rj−θ̂(V
∗)·βXj )

2

σ2
Yj

)

≤ P
( ∑
j∈V∗

ν2j
σ2
Yj

≥ c′′(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj
σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

)
)
.

Similarly,

P
(∣∣ ∑

j∈V∗

(θ̂(V∗) · βXj − θ0 · βXj − rj) · uj
σ2
Yj

∣∣ ≥ 1

10

( ∑
j∈V∗

(θ0 · βXj + rj − θ̂(V∗) · βXj )2

σ2
Yj

− κn · (v∗ − v1)
))

≤ P
( ∑
j∈V∗

u2j
σ2
Yj

≥ c′′(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj
σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

)
)
.

Using Lemma 1, we can show that these ten probabilities are bounded by 2·e−c
′·min

{
v∗2·∆2(V∗)

v1
, v∗·∆2(V∗), v∗·∆(V∗)

}
.

To prove e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ) − κn · v∗ ≤ h(V1, θ0) − κn · v1
)
→ 0 uniformly for any

V∗ ∈ Vbias(ε) such that |V∗| = v∗ ≥ 1+c1
2 · v1 and V∗ ̸= V1, we only need to show

2e(sλ+1)·ln(sλ) · e
−c′·min

{
v∗·∆(V∗), v∗·∆2(V∗), v

∗2·∆(V∗)
v1

}
→ 0.

The above formula can be converted into

2e(sλ+1)·ln(sλ) · e−c′·min{v∗·∆(V∗)} → 0. (S8)

We prove the Equation (S8) in Lemma 6.
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When v∗ < 1+c1
2 · v1, we decompose h(V∗, θ̂(V∗)) in a different way,

h(V∗, θ̂(V∗)) =
∑
j∈V∗

(β̂Yj − θ̂(V∗) · β̂Xj,RB)2

σ2
Yj

− θ̂(V∗)2
∑
j∈V∗

σ̂2
Xj,RB

σ2
Yj

=
∑
j∈V∗

(β̂Yj − θ̂(V∗) · β̂Xj,RB)2

σ2
Yj

− θ̂(V∗)2
∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− θ̂(V∗)2
∑
j∈V∗

σ2
Xj,RB

σ2
Yj

Under Condition 4, there exists a C0 > 0 such that

P
(
min
θ∈R

h(V∗, θ)− κn · v∗ ≤ h(V1, θ0)− κn · v1
)

≤ P
( ∑

j∈V∗

(β̂Yj − θ̂(V∗) · β̂Xj,RB)
2

σ2
Yj

+ κn · (v1 − v∗) ≤ θ̂(V∗)2
∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

+ θ̂(V∗)2
∑
j∈V∗

σ2
Xj,RB

σ2
Yj

+
∑
j∈V1

ν2j − σ2
Yj

σ2
Yj

+ θ20
∑
j∈V1

u2
j − σ2

Xj,RB

σ2
Yj

− θ20
∑
j∈V1

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

− 2θ0
∑
j∈V1

νjuj

σ2
Yj

)
≤ P

( ∑
j∈V∗

(β̂Yj
− θ̂(V∗) · β̂Xj,RB

)2

σ2
Yj

+ κn · (v1 − v∗) ≤ C2
0

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ C2
0 · v∗

+
∣∣ ∑
j∈V1

ν2j − σ2
Yj

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈V1

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈V1

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈V1

νjuj

σ2
Yj

∣∣)
≤ P

(
κn · (v1 − v∗)− C2

0 · v∗ ≤ C2
0

∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ ∣∣ ∑
j∈V1

ν2j − σ2
Yj

σ2
Yj

∣∣
+ θ20

∣∣ ∑
j∈V1

u2
j − σ2

Xj,RB

σ2
Yj

∣∣+ θ20
∣∣ ∑
j∈V1

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣+ 2θ0
∣∣ ∑
j∈V1

νjuj

σ2
Yj

∣∣).
For simplicity, we can assume C0 = 1 and θ0 = 1.

Using v∗ < 1+c1
2 · v1, we know that there must be a c > 0 such that

κn · (v1 − v∗)− C2
0 · v∗ ≥ c · κn · v1.

then the above probability is bounded by

P
(∣∣ ∑

j∈V1

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ c

5
· κn · v1

)
+ P

(∣∣ ∑
j∈V∗

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ c

5
· κn · v1

)

+ P
(∣∣ ∑

j∈V1

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ c

5
· κn · v1

)
+ P

(
2
∣∣ ∑
j∈V1

νjuj
σ2
Yj

∣∣ ≥ c

5
· κn · v1

)
+ P

(∣∣ ∑
j∈Vλ

ν2j − σ2
Yj

σ2
Yj

∣∣ ≥ c

5
· κn · v1

)
.
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Using Lemma 1, we know that there exists a c′ > 0 such that the these five terms are bounded

by 2 · e−c
′·min

{
κ2nv1,

κ2nv
2
1

v∗ , κn·v1
}
.

To prove e(sλ+1)·ln(sλ) ·P
(
min
θ∈R

h(V∗, θ)−κn ·v∗ ≤ h(V1, θ0)−κn ·v1
)
→ 0, we only need to show

2e(sλ+1)·ln(sλ) · e−c′·κn·v1 → 0.

This can be easily verified by Condition 8 and 9. So we can conclude that e(sλ+1)·ln(sλ) ·

P
(
min
θ∈R

h(V∗, θ) − κn · v∗ ≤ h(V1, θ0) − κn · v1
)
→ 0 uniformly for V∗ ∈ Vbias(ε) such that v∗ <

1+c1
2 · v1.

Therefore, we conclude that e(sλ+1)·ln(sλ) · P
(
min
θ∈R

h(V∗, θ) − κn · v∗ ≤ h(V1, θ0) − κn · v1
)
→ 0

uniformly for all V∗ ∈ Vbias(ε).

S.6.4 Proof of Lemma 5

To prove this lemma, we first define the event:

A(V, ε) =

∣∣∑
j∈V

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ < 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

⋂
∣∣∑

j∈V

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj


⋂∣∣∑

j∈V

βXjuj

σ2
Yj

∣∣ < 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

⋂
 4aλ√

sλ · κλ
∣∣∑
j∈V

rjuj
σ2
Yj

∣∣ < ε ·
∑
j∈V

β2
Xj

σ2
Yj

 .

We want to show for any ε > 0 and any given V /∈ Vbias(ε), under event A(V, ε)

aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

< 9 · ε.

and P(A(V, ε))→ 1.

To do this, we make the following decomposition,

aλ√
sλ · κλ

∑
j∈V rj · β̂Xj,RB∑

j∈V β̂2
Xj,RB

− σ̂2
Xj,RB

=
aλ√
sλ · κλ

∑
j∈V rj · βXj +

∑
j∈V rj · uj∑

j∈V β2
Xj

+
∑

j∈V 2βXjuj +
∑

j∈V(σ̂
2
Xj,RB

− σ2
Xj,RB

) +
∑

j∈V(u
2
j − σ2

Xj,RB
)

and notice that under A(V, ε) we have
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aλ√
sλ · κλ

∑
j∈V rj · β̂Xj,RB∑

j∈V β̂2
Xj,RB

− σ̂2
Xj,RB

≤ aλ√
sλ · κλ

∑
j∈V rj · βXj +

∑
j∈V rj · uj

1
4 ·
∑

j∈V β2
Xj

=
4 · aλ√
sλ · κλ

∑
j∈V rj · βXj∑
j∈V β2

Xj

+
4 · aλ√
sλ · κλ

∑
j∈V rj · uj∑
j∈V β2

Xj

<
4 · aλ√
sλ · κλ

∑
j∈V rj · βXj∑
j∈V β2

Xj

+ ε.

For the first term on the right-hand side

4 · aλ√
sλ · κλ

·
∑

j∈V rj · βXj∑
j∈V β2

Xj

, we can rewrite it as

4 ·
√
nsλ · β2

0 ·
∑

j∈V rj · βXj∑
j∈V β2

Xj

= 4 ·
√
nsλ · β2

0 ·
(v′2k + v′3) · r3β0

v′1β
2
0 + v′2β

2
0 + v′3β

2
0

= 4 ·
√
nsλ · β2

0 ·
v′2k + v′3

(v′1 + v′2 + v′3)
· r3
β0

= 4 ·
√
nsλ · β2

0 · (p2(V) · k + p3(V))
r3
β0

= 4 ·
√
nsλ · (p2(V) · k + p3(V)) · r3.

where k = r2
r3
. For any given ε > 0, we have p3(V) < ε√

nsλ·r3 for all V /∈ Vbias(ε). If we have

r2 <
ε√
nsλ

, then we know

4 ·
√
nsλ · β2

0 ·
∑

j∈V rj · βXj∑
j∈V β2

Xj

= 4 ·
√
nsλ · (p2(V) · k + p3(V)) · r3 < 8ε.

holds for any given V /∈ Vbias(ε).

Now we show that under A(V, ε),

aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

< 9 · ε.
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It suffices to show that P(A(V, ε))→ 1. We have

P(A(V, ε)) ≥ 1− P
(∣∣∑

j∈V

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
− P

(∣∣∑
j∈V

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)

− P
(∣∣∑

j∈V

βXjuj

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
− P

( 4aλ√
sλ · κλ

∣∣∑
j∈V

rjuj
σ2
Yj

∣∣ ≥ ε ·
∑
j∈V

β2
Xj

σ2
Yj

)

Under Condition 1, we have

P
(∣∣∑

j∈V

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
≤ 2 · e

−c·min{

(
∑
j∈V

β2Xj

σ2
Yj

)2

16·v , 1
4
·
∑
j∈V

β2Xj

σ2
Yj

}
= 2 · e−c·min{ 1

16
·n2·vβ4

0 ,
1
4
·n·vβ2

0}

P
(∣∣∑

j∈V

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
≤ 2 · e

−c·min{

(
∑
j∈V

β2Xj

σ2
Yj

)2

16·v , 1
4
·
∑
j∈V

β2Xj

σ2
Yj

}
= 2 · e−c·min{ 1

16
·n2·vβ4

0 ,
1
4
·n·vβ2

0}

P
(∣∣∑

j∈V

βXjuj

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
≤ 2 · e

−c·(
∑
j∈V

β2Xj

σ2
Yj

)2

16·
∑
j∈V

β2
Xj

σ2
Yj = 2 · e

− c
16

·
∑
j∈V

β2Xj

σ2
Yj = 2 · e−

c
16
n·
∑
j∈V β

2
Xj = 2 · e−

c
16
n·v·β2

0 .

P
( 4aλ√

sλ · κλ
∣∣∑
j∈V

rjuj
σ2
Yj

∣∣ ≥ ε ·
∑
j∈V

β2
Xj

σ2
Yj

)
≤ 2 · e

−c·ε2·(
∑
j∈V

β2Xj

σ2
Yj

)2

16·
∑
j∈V

r2
j

σ2
Yj

· sλ·κλ
a2
λ

= 2 · e
−c·ε2·n2·v2β40
16n

∑
j∈V r2

j

1

nsλβ
2
0 = 2 · e

−c·ε2·β20
p2(V)r22+p3(V)r23

v
16sλ .

Thus we have P(A(V, ε)) ≥ 1− 2 · e−
c
16
n·v·β2

0 − 4 · e−c·min{ 1
16

·n2·vβ4
0 ,

1
4
·n·vβ2

0} − 2 · e
−c·ε2·β20

p2(V)r22+p3(V)r23

v
16sλ .

Since |V| = v ≥ 1+c1
2 sλ and p3(V) < ε√

nsλ·r3 for V /∈ Vbias(ε), if we have k < ε√
nsλ·r3 then

p2(V)r22 + p3(V)r23
ε2 · β2

0

≤ 2ε
√
nsλr3

r23
ε2β2

0

=
2ε
√
nsλ

r3
ε2β2

0

=
2
√
nsλ

r3
εβ2

0

.

If 1√
nsλ

r3
εβ2

0
→ 0 and 1

n2·sλβ4
0
→ 0, we then can show P(A(V, ε))→ 1.
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Thus we have

aλ√
sλ · κλ

·
∑

j∈V rj · β̂Xj,RB∑
j∈V β̂2

Xj,RB
− σ̂2

Xj,RB

= Op(ε),

for any given V /∈ Vbias(ε).

S.6.5 Additional Lemmas

Lemma 6 Under Condition 2 and 8, if An/(r3ε) = o(1), we have

2e(sλ+1)·ln(sλ) · e−c′·min{v·∆(V)} → 0 and
κn · (v − v1)

v ·∆(V)
→ 0.

uniformly hold for all V ∈ Vbias(ε) and v = |V| ≥ 1+c1
2 v1.

S.6.5.1 Proof of Lemma 6

For a given set V ∈ Vbias(ε), we let v′1 = |V1 ∩ V|, v′2 = |V2 ∩ V| and v′3 = |V3 ∩ V|. Then

∆(V) = 1

v′1 + v′2 + v′3
(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj
σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

) =
v′2k

2 + v′3
v′1 + v′2 + v′3

· nr23 − n · (v
′
2k · r3β0 + v′3 · r3β0)2

v′1β
2
0 + v′2β

2
0 + v′3β

2
0

· 1

v′1 + v′2 + v′3

=
v′2k

2 + v′3
v′1 + v′2 + v′3

· nr23 −
(v′2k + v′3)

2 · nr23
(v′1 + v′2 + v′3)

2
.

Using the definition of p1(V), p2(V) and p3(V), we have

∆(V) = 1

v′1 + v′2 + v′3
(
∑
j∈V

r2j
σ2
Yj

−
(
∑
j∈V

rj ·βXj
σ2
Yj

)2

∑
j∈V

β2
Xj

σ2
Yj

) = (p2(V)k2 + p3(V)) · nr23 − (p2(V)k + p3(V))2 · nr23.

where k = r2
r3
.
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We have

p2(V)k2 + p3(V)− (p2(V)k + p3(V))2

= (p2(V)− p2(V)2)k2 − 2p2(V)p3(V) · k + p3(V)− p3(V)2

= p2(V)(p1(V) + p3(V))k2 − 2p2(V)p3(V) · k + p3(V)(p1(V) + p2(V))

= p2(V)p3(V) · k2 − 2p2(V)p3(V) · k + p2(V)p3(V) + p1(V)p3(V) + p2(V)p1(V) · k2

= p2(V)p3(V) · (k − 1)2 + p1(V)p3(V) + p2(V)p1(V) · k2

Note that we have

p3(V) <
v′3

v′1 + v′2 + v′3
<

c1 · v1
1+c1
2 · v1

=
2c1

1 + c1
.

Let c′1 = 2c1
1+c1

. If p3(V) ≥ ε√
nsλ·r3 , we have 1 − c′1 < p1(V) + p2(V) ≤ 1 − ε√

nsλ·r3 . Then we

consider two different situations:

• p2(V) ≥
1−c′1
2 : by choosing k < 1

2 , we have

(p2(V)k2 + p3(V))− (p2(V)k + p3(V))2 ≥ p2(V)p3(V) · (k − 1)2 >
(1− c′1)

8

ε
√
nsλ · r3

.

• p2(V) <
1−c′1
2 : we have p1(V) >

1−c′1
2 ,

(p2(V)k2 + p3(V))− (p2(V)k + p3(V))2 ≥ p1(V)p3(V) >
1− c′1

2
· ε
√
nsλ · r3

.

So we have when p3(V) ≥ ε√
nsλ·r3 ,

(p2(V)k2 + p3(V))− (p2(V)k + p3(V))2 >
(1− c′1)

8
· ε
√
nsλ · r3

.

Now we consider

(sλ + 1) · ln(sλ)
v ·∆(V)

=
sλ + 1

v

ln(sλ)

((p2(V)k2 + p3(V))− (p2(V)k + p3(V))2) · nr23
≤ sλ + 1

c1+1
2 · v1

8
√
sλmax{ln(sλ), κn}
(1− c′1) · ε ·

√
nr3

.
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κn · (v − v1)

v ·∆(V)
≤ κn

((p2(V)k2 + p3(V))− (p2(V)k + p3(V))2) · nr23
≤

8
√
sλmax{ln(sλ), κn}
(1− c′1) · ε ·

√
nr3

.

Using Condition 8 we have sλ+1
c1+1

2
·v1

= O(1). Then if we further have

An
εr3

= o(1),

we then can show

2e(sλ+1)·ln(sλ) · e−c′·min{v·∆(V)} → 0 and
κn · (v − v1)

v ·∆(V)
→ 0.

S.6.6 Sufficient conditions for the Boundness condition

Condition 10 (Boundedness) For any V ∈ Sλ, |θ̂(V)| is uniformly bounded away from ∞ with

probability goes to 1.

To see this, we can decompose θ̂(V) as follows:

θ̂(V) =

∑
j∈V

(θ0βXj+rj)βXj
σ2
Yj

+
∑

j∈V
βXj νj

σ2
Yj

+
∑

j∈V
(θ0βXj+rj)uj

σ2
Yj

+
∑

j∈V
ujνj
σ2
Yj∑

j∈V
β2
Xj

σ2
Yj

+ 2
∑

j∈V
βXjuj

σ2
Yj

+
∑

j∈V
u2j−σ2

Xj,RB

σ2
Yj

−
∑

j∈V
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

=

(θ0 +max
j∈Sλ
| rjβXj |)

∑
j∈V

β2
Xj

σ2
Yj

+
∑

j∈V
βXj νj

σ2
Yj

+ (θ0 +max
j∈Sλ
| rjβXj |)

∑
j∈V

βXjuj

σ2
Yj

+
∑

j∈V
ujνj
σ2
Yj∑

j∈V
β2
Xj

σ2
Yj

+ 2
∑

j∈V
βXjuj

σ2
Yj

+
∑

j∈V
u2j−σ2

Xj,RB

σ2
Yj

−
∑

j∈V
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

Define the event B(V)

B(V) =

∣∣∑
j∈V

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ < 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

⋂
∣∣∑

j∈V

u2j − σ2
Xj,RB

σ2
Yj

∣∣ < 1

4
·
∑
j∈V

β2
Xj

σ2
Yj


⋂2

∣∣∑
j∈V

βXjuj

σ2
Yj

∣∣ < 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

⋂
∣∣∑

j∈V

ujνj
σ2
Yj

∣∣ < 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

⋂
∣∣∑

j∈V

βXjνj

σ2
Yj

∣∣ < 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

 .
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Under B(V), we have

θ̂(V) =
(θ0 +max

j∈Sλ
| rjβXj |)

∑
j∈V

β2
Xj

σ2
Yj

+
∑

j∈V
βXj νj

σ2
Yj

+ (θ0 +max
j∈Sλ
| rjβXj |)

∑
j∈V

βXjuj

σ2
Yj

+
∑

j∈V
ujνj
σ2
Yj∑

j∈V
β2
Xj

σ2
Yj

+ 2
∑

j∈V
βXjuj

σ2
Yj

+
∑

j∈V
u2j−σ2

Xj,RB

σ2
Yj

−
∑

j∈V
σ̂2
Xj,RB

−σ2
Xj,RB

σ2
Yj

≤
(θ0 +max

j∈Sλ
| rjβXj |)

∑
j∈V

β2
Xj

σ2
Yj

+ 1
4 ·
∑

j∈V
β2
Xj

σ2
Yj

+ (θ0 +max
j∈Sλ
| rjβXj |) ·

1
8 ·
∑

j∈V
β2
Xj

σ2
Yj

+ 1
4 ·
∑

j∈V
β2
Xj

σ2
Yj

1
4 ·
∑

j∈V
β2
Xj

σ2
Yj

=
9

2
· (θ0 + |

r3
β0
|) + 2.

Notice that

P(B(V)) ≥ 1− P
(∣∣∑

j∈V

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
− P

(∣∣∑
j∈V

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)

− P
(
2
∣∣∑
j∈V

βXjuj

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
− P

(∣∣∑
j∈V

ujνj
σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
− P

(∣∣∑
j∈V

βXjνj

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
.
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Under Condition 1, we have

P
(∣∣∑

j∈V

σ̂2
Xj,RB

− σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
≤ 2 · e

−c·min{

(
∑
j∈V

β2Xj

σ2
Yj

)2

16·v , 1
4
·
∑
j∈V

β2Xj

σ2
Yj

}
= 2 · e−c·min{ 1

16
·n2·vβ4

0 ,
1
4
·n·vβ2

0}

P
(∣∣∑

j∈V

u2j − σ2
Xj,RB

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
≤ 2 · e

−c·min{

(
∑
j∈V

β2Xj

σ2
Yj

)2

16·v , 1
4
·
∑
j∈V

β2Xj

σ2
Yj

}
= 2 · e−c·min{ 1

16
·n2·vβ4

0 ,
1
4
·n·vβ2

0}

P
(
2
∣∣∑
j∈V

βXjuj

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
≤ 2 · e

−c·(
∑
j∈V

β2Xj

σ2
Yj

)2

64·
∑
j∈V

β2
Xj

σ2
Yj = 2 · e

− c
64

·
∑
j∈V

β2Xj

σ2
Yj = 2 · e−

c
64
n·
∑
j∈V β

2
Xj = 2 · e−

c
64
n·v·β2

0

P
(∣∣∑

j∈V

βXjνj

σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
≤ 2 · e

−c·(
∑
j∈V

β2Xj

σ2
Yj

)2

16·
∑
j∈V

β2
Xj

σ2
Yj = 2 · e

− c
16

·
∑
j∈V

β2Xj

σ2
Yj = 2 · e−

c
16
n·
∑
j∈V β

2
Xj = 2 · e−

c
16
n·v·β2

0

P
(∣∣∑

j∈V

ujνj
σ2
Yj

∣∣ ≥ 1

4
·
∑
j∈V

β2
Xj

σ2
Yj

)
≤ 2 · e

−c·min{

(
∑
j∈V

β2Xj

σ2
Yj

)2

16·v , 1
4
·
∑
j∈V

β2Xj

σ2
Yj

}
= 2 · e−c·min{ 1

16
·n2·vβ4

0 ,
1
4
·n·vβ2

0}.

Thus we have P(B(V)) ≥ 1− 2 · e−
c
16
n·v·β2

0 − 2 · e−
c
64
n·v·β2

0 − 6 · e−c·min{ 1
16

·n2·vβ4
0 ,

1
4
·n·vβ2

0}.

Under the event
⋂

V⊆Sλ B(V), we can show that

θ̂(V) ≤ 9

2
· (θ0 + |

r3
β0
|) + 2.

holds uniformly for all subset V ⊆ Sλ. We also notice that

P
( ⋂

V⊆Sλ

B(V)
)
= 1− P

( ⋃
V⊆Sλ

BC(V)
)
≥ 1−

∑
V⊆Sλ

P
(
BC(V)

)
.

Here BC(V) is the complement of the event B(V).

To prove P
(⋂

V⊆Sλ B(V)
)
→ 1, we only need to show

∑
V⊆Sλ

P
(
BC(V)

)
≤ e(sλ+1)·ln(sλ) max

V⊆Sλ
P
(
BC(V)

)
→ 0.
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We have shown P(B(V)) ≥ 1 − 2 · e−
c
16
n·v·β2

0 − 2 · e−
c
64
n·v·β2

0 − 6 · e−c·min{ 1
16

·n2·vβ4
0 ,

1
4
·n·vβ2

0}, thus

P(BC(V)) < 2 · e−
c
16
n·v·β2

0 + 2 · e−
c
64
n·v·β2

0 + 6 · e−c·min{ 1
16

·n2·vβ4
0 ,

1
4
·n·vβ2

0}.

With these results, we can prove e(sλ+1)·ln(sλ)maxV⊆Sλ P
(
BC(V)

)
→ 0 if we have sλln(sλ)

nβ2
0
→ 0.

Thus we have

θ̂(V) ≤ 9

2
· (θ0 + |

r3
β0
|) + 2.

holds uniformly for all subset V ⊆ Sλ with probability approaching one.

If there exists a constant C > 0 such that | r3β0 | < C, we then can verify that

θ̂(V) ≤ 9

2
· (θ0 + C) + 2.

for all subset V ⊆ Sλ with probability going to one.

S.7 Connections and differences with [4]

A summary of the proposed method in [4]. The authors consider a setup with an initial GWAS

scan and a replication study. In the initial scan, they let the {X1, . . . , XK} be the estimated effect

size for K SNPs. They also assume these effect sizes follow normal distributions:

Xi ∼ N (µi, σ
2
1,i).

This initial scan is used for selecting the strong SNPs. They ordered these effect size asX(1), . . . , X(K)

and denote the corresponding means and variances as µ(1), . . . , µ(K) and σ2
1,(1), . . . , σ

2
1,(K), and then

perform the following selection:

|X(1)|
σ1,(1)

≥
|X(2)|
σ1,(2)

≥ . . .
|X(1,k)|
σ(k)

≥ Φ−1(1− ccrit) = λ.

Due to the selection step, the distribution of X(i) becomes truncated normal, and therefore, X(i)

is a biased estimator of µ(i). To get an unbiased estimation, the authors leverage the replication
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study, where Yi is the effect size of the i-th ranked SNP such that

Yi ∼ N (µ(i), σ
2
2,i)

For simplicity, we let σ2
1,(i) = σ2

2,i = σ2
i . Obviously, Yi is an unbiased estimator of µ(i). However,

it often has a large variance. For this reason, the authors proposed a weighed version of estimator,

µ̂(i) =
σ2
1,(i)Yi + σ2

2,iX(i)

σ2
1,(i) + σ2

2,i

=
Yi +X(i)

2
,

which can effectively combine the data from both the initial scan and the replication study.

Based on this estimator µ̂(i), they then construct an unbiased estimator of µ(i) and further use

the Rao-Blackwellization to obtain an unbiased estimator with the minimum variance.

This estimator takes the form:

µ̃(i) = µ̂(i) −
σi√
2
·
ϕ(W

(0)
i,i+1)− ϕ(W

(0)
i,i−1)− ϕ(W

(1)
i,i+1) + ϕ(W

(1)
i,i−1)

Φ(W
(0
i,i+1)− Φ(W

(0
i,i−1)− Φ(W

(0
i,i+1) + Φ(W

(0
i,i−1)

,

where W
(p)
s,t =

√
2

σs
· (µ̂(s) − (−1)p σs|X(t)|

σt
),

|X(0)|
σ(0)

=∞, and
|X(k+1)|
σ(k+1)

= Φ−1(1− ccrit) = λ.

Connections and differences with our approach. When customizing the proposed ap-

proach in [4] to our problem for SNP selection, we may perform the selection following:

|X(1)|
σ1

≥ Φ−1(1− ccrit) = λ.

Then, the corresponding unbiased estimator for µ(1) can then be given by

µ̃(1) = µ̂(1) −
σ1√
2
·
ϕ(W

(0)
1,2 )− ϕ(W

(0)
1,0 )− ϕ(W

(1)
1,2 ) + ϕ(W

(1)
1,0 )

Φ(W
(0)
1,2 )− Φ(W

(0)
1,0 )− Φ(W

(1)
1,2 ) + Φ(W

(1)
1,0 )

= µ̂(1) −
σ1√
2
·

ϕ(W
(0)
1,2 )− ϕ(W

(1)
1,2 )

Φ(W
(0)
1,2 ) + 1− Φ(W

(1)
1,2 )

= µ̂(1) −
σ1√
2
·

ϕ(
√
2

σ1
· (µ̂(1) − λ))− ϕ(

√
2

σ1
· (µ̂(1) + λ))

Φ(
√
2

σ1
· (µ̂(1) − λ)) + 1− Φ(

√
2

σ1
· (µ̂(1) + λ))

.

Although this estimator appears very similar to the one proposed in our manuscript, it requires
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summary statistics from a replication study (as W
(p)
s,t depends on Yi). In other words, to provide

an unbiased estimator of µ(1), [4] requires two GWAS: one initial GWAS for selection and another

replication study for unbiased estimator construction. Therefore, the key difference between [4] and

our approach is that our method can construct an unbiased estimator of µ(1) without a replication

study. In other words, the setting considered in [4] is aligned with the three-sample MR setting,

where SNP selection is performed on a third independent exposure GWAS sample. In constrast,

we focus on the two-sample MR, where SNP selection and parameter estimation are carried out in

the same exposure GWAS sample. From a different perspective, our approach is indeed connected

to [4] as a Rao-Blackwellization step is applied to improve the estimation efficiency.

S.8 Simulation settings and additional simulation results

S.8.1 Simulation settings

Note that the total effects of SNP j on exposure X and outcome Y can be written as:

βXj = γj + βXUϕj ; βYj = θβXj + αj + βY Uϕj ,

where γj , ϕj , and αj is the true direct effect of SNP j on X, confounding factor U , and Y ,

respectively (see Figure 1). Following [39], we simulate summary-level association statistics β̂Xj

and β̂Yj directly. Specifically, we generate

β̂Xj
β̂Yj

 ∼ N

βXj
βYj

 ,

σXj 0

0 σYj


 ,

where σXj =
√
1/nX and σXj =

√
1/nY .

To save space and make the simulations representative of real GWAS data, we focus on gen-

eral simulation settings where both directional correlated pleiotropy and balanced uncorrelated

pleiotropy are considered simultaneously. Other specific simulation settings have also been briefly

considered. Specifically, we generate the underlying parameters from a mixture of distributions, a
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setup that has been widely used for modeling the effect sizes of complex traits in GWAS [7, 47, 55]:
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where δ0 is a Dirac measure centered on zero (i.e., the point mass at 0), π1 controls the proportion

of valid IVs (where γj ̸= 0 and both αj and ϕj are equal to zero), π2 controls the proportion of

invalid IVs due to correlated pleiotropy, π3 controls the proportion of invalid IVs due to uncorrelated

pleiotropy, π4 controls the proportion of SNPs that are only associated with Y , and π5 = 1−
∑3

j=1 πj

controls the proportion of SNPs that have no association with both X and Y . Note that when

ϕj ̸= 0, the Instrument Strength Independent on Direct Effect (InSIDE) assumption is violated for

SNP j because the exposure effect is correlated with their pleiotropic effects on the come due to

mediation by common confounding factor U . InSIDE assumption is popular in MR literature and

requires that the exposure effects of individual SNPs are independent of their pleiotropic effects on

the outcome [10].

Following [39], we generate 200,000 independent SNPs to represent all underlying common

variants and set σ2
x = σ2

y = σ2
u = 1×10−5, βXU = βY U = 0.3. We set nX = nY = 500, 000 to reflect

the sample size of a typical GWAS in our real data analyses. We further set π1 + π2 + π3 = 0.02,

π2 = π3, π4 = 0.01, and π5 = 0.97. We vary the proportion of invalid IVs, which is defined as

(π2 + π3)/(π1 + π2 + π3), to simulate different situations.

Our proposed CARE estimator is compared with widely used IVW method [8] and seven other

popular, recently proposed robust MR methods, including cML and cML-DP [53], MR-Egger [2],

Weighted-Median [3], MR-mix [38], Weighted-Mode [22], MR-APSS [25], RAPS [56], contami-

nation mixture [ContMix; 9], and MR-Lasso [40]. For IVW, we use the random effects version,

which accounts for invalid IVs by allowing over-dispersion in the regression model. For CARE and

MR-APSS, we set the significance threshold at 5 × 10−5. Following common practice, for other

benchmark methods, we set the cut-off value λ at 5.45 (corresponding to the significance threshold

5 × 10−8). In our numerical studies, we used η = 0.5 as the default value in the winner’s curse
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removal step. We simulate 500 Monte Carlo repetitions to evaluate empirical statistical power

(θ ̸= 0) and 1,000 Monte Carlo repetitions to evaluate Type 1 error rates (θ = 0).

We report our simulation results with five measures: Type 1 error rates (proportions of mistaken

rejection under θ = 0), power (proportions of p-values less than the significance threshold 0.05

under θ ̸= 0), absolute bias (the absolute difference between the estimated θ̂ and the true θ), mean

squared error (the average squared difference between the estimated θ̂ and the true θ), and coverage

probability (average coverage probability of the 95% confidence interval).

S.8.2 Different proportions of invalid IVs, CARE without winner’s curse, and

running time

We conduct several additional simulations. We generate the parameters using the following distri-

bution:
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,
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We follow the main simulation setting and set π1 + π2 + π3 = 0.02, π4 = 0.01, and π5 = 0.97.

We vary the proportion of invalid IVs, which is defined as (π2 + π3)/(π1 + π2 + π3), to simulate

different situations. Figure S1 summarizes the result to compare the performance of the CARE

estimator and CARE estimator without winner’s curse bias correction under the setting with 50%

invalid IVs. Figures S2 and S3 summarize the results for the settings with 30% and 70% invalid

IVs. Figure S4 summarizes the runtime of the CARE estimator and several robust MR methods

for the setting with 50% invalid IVs.
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Figure S1: Type 1 error rates, power, absolute bias, mean squared error, and coverage of the CARE
estimator and CARE estimator without winner’s curse bias correction (CARE no correction) under
the setting with 50% invalid IVs. Power is the empirical power estimated by the proportion of p-
values less than the significance threshold 0.05. Coverage is the empirical coverage probability of
the 95% confidence interval.

Figure S2: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the main setting with 30% invalid IVs. Power is the empirical
power estimated by the proportion of p-values less than the significance threshold 0.05. Coverage
is the empirical coverage probability of the 95% confidence interval.
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Figure S3: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the main setting with 70% invalid IVs. Power is the empirical
power estimated by the proportion of p-values less than the significance threshold 0.05. Coverage
is the empirical coverage probability of the 95% confidence interval.

Figure S4: Runtime (in seconds) of the CARE estimator and several robust MR methods under the
main setting (12,000 simulations in total). The box limits represent the lower and upper quartiles,
the central line represents the median, and the whiskers represent all samples lying within 1.5 times
the interquartile range (IQR).
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S.8.3 Uniform distributed effects in correlated pleiotropy

Under the setting using uniform distributed effects in correlated pleiotropy, αj follows the uniform

distribution. We generate γj , αj using the following distribution:
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(S11)

We follow the main simulation setting and set π1 + π2 + π3 = 0.02, π4 = 0.01, and π5 = 0.97.

We vary the proportion of invalid IVs, which is defined as (π2 + π3)/(π1 + π2 + π3), to simulate

different situations. Figures S5 to S7 summarize the results for the settings with 30%, 50%, and

70% invalid IVs.

S.8.4 Balanced horizontal pleiotropy with InSIDE assumption satisfied

Under the setting of balanced horizontal pleiotropy with the InSIDE assumption satisfied, we allow

the InSIDE assumption to be satisfied by setting ϕj = 0. We generate γj , αj using the following

distribution:γj
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︸ ︷︷ ︸
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.

We follow the main simulation setting and set π1 + π3 = 0.02, π4 = 0.01, and π5 = 0.97. We vary

the proportion of invalid IVs, which is defined as (π3)/(π1 + π3), to simulate different situations.

Figures S8 to S10 summarize the results for the settings with 30%, 50%, and 70% invalid IVs.

80



Figure S5: Power, absolute bias, mean squared error, and coverage of the CARE estimator and sev-
eral robust MR methods under the setting of uniformly distributed effects in correlated pleiotropy
with 30% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%
confidence interval.
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Figure S6: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the setting of uniform distributed effects in correlated pleiotropy
with 50% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%
confidence interval.
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Figure S7: Power, absolute bias, mean squared error, and coverage of the CARE estimator and sev-
eral robust MR methods under the setting of uniformly distributed effects in correlated pleiotropy
with 70% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%
confidence interval.

83



Figure S8: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the setting of balanced horizontal pleiotropy with InSIDE as-
sumption satisfied with 30% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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Figure S9: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the setting of balanced horizontal pleiotropy with InSIDE as-
sumption satisfied with 50% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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Figure S10: Power, absolute bias, mean squared error, and coverage of the CARE estimator
and several robust MR methods under the setting of balanced horizontal pleiotropy with InSIDE
assumption satisfied with 70% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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S.8.5 Directional horizontal pleiotropy with InSIDE assumption violated

Under the setting of directional horizontal pleiotropy with InSIDE assumption violated, we generate

the underlying parameters using the following distribution:
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,

We follow the main simulation setting and set π1 + π2 = 0.02, π4 = 0.01, and π5 = 0.97. We vary

the proportion of invalid IVs, which is defined as (π2)/(π1 + π2), to simulate different situations.

Figures S11 to S13 summarize the results for the settings with 30%, 50%, and 70% invalid IVs.

Figure S11: Power, absolute bias, mean squared error, and coverage of the CARE estimator
and several robust MR methods under the setting of directional horizontal pleiotropy with InSIDE
assumption violated with 30% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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Figure S12: Power, absolute bias, mean squared error, and coverage of the CARE estimator
and several robust MR methods under the setting of directional horizontal pleiotropy with InSIDE
assumption violated with 50% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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Figure S13: Power, absolute bias, mean squared error, and coverage of the CARE estimator
and several robust MR methods under the setting of directional horizontal pleiotropy with InSIDE
assumption violated with 70% invalid IVs. Power is the empirical power estimated by the proportion
of p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability
of the 95% confidence interval.
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S.8.6 Sensitivity analysis using different values of η

We conducted sensitivity analyses using different values of η (0.1, 0.3, 0.5, 0.7, 0.9) in our main

setting. We generate the underlying parameters using the following distribution:
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,

We follow the main simulation setting and set π1 + π2 + π3 = 0.02, π4 = 0.01, and π5 = 0.97.

Figures S14 summarize the results for the settings with 50% invalid IVs.

Figure S14: Power, absolute bias, mean squared error, and coverage of the CARE estimator with
different η under the main setting. Power is the empirical power estimated by the proportion of
p-values less than the significance threshold 0.05. Coverage is the empirical coverage probability of
the 95% confidence interval.

S.8.7 Consistency of using GBIC with different choices of κn as model selection

methods

We discuss the adjustment of BIC when sλ tends to infinity with generalized BIC (GBIC) of the

following form:

GBIC(v) = −2l̂
(
θ̂(v), {r̂j(v)}j∈V̂

)
+ κn · (sλ − v), sλ = |Sλ|.
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We tested two choices of κn: (i) κn = log n and (ii) κn = log(sλ) · log(log(n)), both satisfying

κn ≫ log(sλ). We generate the underlying parameters using the following distribution:
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,

We follow the main simulation setting and set π1 + π2 + π3 = 0.02, π4 = 0.01, and π5 = 0.97.

Figures S15 and S16 summarize the results for the settings with 50% invalid IVs.

Figure S15: Power, absolute bias, mean squared error, and coverage of the CARE estimator using
GBIC with κn = log n and κn = log(sλ) · log(log(n)) under the main setting. Power is the empirical
power estimated by the proportion of p-values less than the significance threshold 0.05. Coverage
is the empirical coverage probability of the 95% confidence interval.
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Figure S16: Comparison of Power, absolute bias, mean squared error, and coverage of the CARE
estimator using GBIC with κn = log n and κn = log(sλ) · log(log(n)) and other benchmark methods
under the main setting with 50% invalid IVs. Power is the empirical power estimated by the
proportion of p-values less than the significance threshold 0.05. Coverage is the empirical coverage
probability of the 95% confidence interval.

S.8.8 Nonlinear settings

In our non-linear simulation settings, we implement a four-step process to model complex genetic

relationships. First, we simulate p mutually independent single nucleotide polymorphisms (SNPs),

denoted as G = (G1, ..., Gp)
T . Each SNP Gj follows a Binomial(2,MAFj) distribution, where

MAFj represents the minor allele frequency drawn from a Uniform(0.01, 0.5) distribution. Next, we

simulate an unmeasured confounder U as U =
∑p

j=1 ϕjGj+EU . The risk factor X is then simulated

as X =
∑p

j=1 f(Gj) + βXUU + EX , and finally, the outcome Y is modeled as Y = θX + βY UU +∑p
j=1 αjGj + EY . In these equations, EU , EX , and EY represent mutually independent random

noise terms, distributed as EU ∼ N (0, σ2
U ), EX ∼ N (0, σ2

X), and EY ∼ N (0, σ2
Y ), respectively.

These distributions are consistent with the main setting. Similarly, the coefficients γj , αj , and ϕj

are generated from the same mixture of distributions as described in the main setting. To explore

different non-linear relationships, we consider three scenarios. In the first, we focus on non-linearity
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in X with a linear Y , where f(Gj) = γ1jG
2
j + γ2jGj , with γ1j = γ2j = γj . The second scenario

introduces additional complexity by incorporating interaction terms between SNPs in the model for

X, such that X =
∑p

j=1 f(Gj)+
∑

i,j∈S γijGiGj+βXUU +EX , where f(Gj) remains as in the first

scenario, and S represents a randomly selected set of 20 SNP pairs for which interaction effects are

modeled. The third scenario introduces non-linearity in Y with Y = θ2X+βY UU+
∑p

j=1 αjGj+EY .

Supplementary Figures S17 to S19 summarize the results for the three scenarios with 50%

invalid IVs. In the first two scenarios with non-linear X on G, CARE showed slightly inflated

Type 1 error rates, larger bias, and worse coverage (Supplementary Figures S17 and S18). The

third scenario revealed that CARE demonstrated diminished power, larger bias, and poor coverage

(Supplementary Figure S19).

Figure S17: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the setting of non-linearity in exposure without interaction terms
with 50% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%
confidence interval.
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Figure S18: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the setting of non-linearity in exposure with interaction terms
with 50% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%
confidence interval.
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Figure S19: Power, absolute bias, mean squared error, and coverage of the CARE estimator
and several robust MR methods under the setting of non-linearity in both exposure and outcome
without interaction terms with 50% invalid IVs. Power is the empirical power estimated by the
proportion of p-values less than the significance threshold 0.05. Coverage is the empirical coverage
probability of the 95% confidence interval.
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S.8.9 Sample size variation of GWAS

We evaluate the performance of CARE estimator and benchmark MR methods with different

sample sizes of both exposure and outcome GWAS (100000, 50000, 10000, 5000). We generate

the underlying parameters using the same distribution as the main setting.

We follow the main simulation setting and set π1+π2+π3 = 0.02, π4 = 0.01, and π5 = 0.97. We

vary the proportion of invalid IVs, which is defined as (π2+π3)/(π1+π2+π3), to simulate different

situations. To maintain heritability within a biologically plausible range, we adjust the variance

of the risk factor, denoted as σ2
X , across different simulation scenarios to maintain reasonable

heritability. Figure S20 to S23 summarize the results for different sample sizes. The findings

indicate that CARE’s performance deteriorates as the sample size of GWAS decreases.

Figure S20: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with sample size = 100000, σ2

x = 1× 10−5 and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S21: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with sample size = 50000, σ2

x = 5× 10−5 and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S22: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with sample size = 10000, σ2

x = 8× 10−5 and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S23: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with sample size = 5000, σ2

x = 1 × 10−4 and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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S.8.10 Variations in number of SNPs

We evaluate the performance of CARE estimator and benchmark MRmethods with different sample

sizes of SNPs (100000, 50000, 10000, 5000, 1000). We generate the underlying parameters using

the following distribution:
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N(0, σ2
y)

δ0
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+π4


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N(0, σ2
y)

δ0

+ π5


δ0

δ0

δ0


︸ ︷︷ ︸
IVs fail the relevance assumption

,

We follow the main simulation setting and set π1 + π2 + π3 = 0.02, π4 = 0.01, and π5 = 0.97.

Supplementary Figure S24 to S27 summarize the results for different sample sizes of SNPs. The

findings indicate that CARE’s performance deteriorates as the sample size of SNPs decreases.

Figure S24: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with the number of SNPs equal to 100,000, and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S25: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with the number of SNPs equal to 50,000, and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.

101



Figure S26: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with the number of SNPs equal to 10,000, and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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Figure S27: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods with the number of SNPs equal to 5,000, and 50% invalid IVs. Power
is the empirical power estimated by the proportion of p-values less than the significance threshold
0.05. Coverage is the empirical coverage probability of the 95% confidence interval.
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S.8.11 Using the same liberal threshold

To assess the influence of the IV selection threshold, we compared all methods using the same

liberal threshold of p < 5× 10−5 under the main setting. We generate 200,000 independent SNPs

to represent all underlying common variants and set σ2
x = σ2

y = σ2
u = 1 × 10−5, βXU = βY U = 1.

We set nX = nY = 500, 000 to reflect the sample size of a typical GWAS in our real data analyses.

We further set π1 + π2 = 0.02, π4 = 0.01, and π5 = 0.97. We let the proportion of invalid

IVs, which is defined as π2/(π1 + π2) be equal to 50%. While some competing methods showed

increased power, this often came at the cost of inflated Type I error rates and poor confidence

interval coverage. CARE maintained its advantages in terms of bias, mean squared error, and valid

inference. Figure S28 summarize the results for this setting.

Figure S28: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the main setting with 50% invalid IVs. The significant threshold
is 5× 10−5 for all methods. Power is the empirical power estimated by the proportion of p-values
less than the significance threshold of 0.05. Coverage is the empirical coverage probability of the
95% confidence interval.
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S.8.12 Comparison of l0 and l1 algorithms

We conduct a series of simulations to compare the performances of these two methods with the l0

constraint approach adopted in this manuscript. Firstly, we varied the proportion of invalid IVs

(30%, 50%). We also tested the performance under the setting of uniform distributed effects in

correlated pleiotropy with 50% invalid IVs (See S.8.3 for the details of the setting).

We generate 200,000 independent SNPs to represent all underlying common variants and set

σ2
x = σ2

y = σ2
u = 1 × 10−5, βXU = βY U = 1. We set nX = nY = 500, 000 to reflect the sample

size of a typical GWAS in our real data analyses. We further set π1 + π2 = 0.02, π4 = 0.01, and

π5 = 0.97. Figure S29 to S31 summarize the results for these settings. Our findings consistently

demonstrate that while both approaches maintain comparable Type I error control, absolute bias,

mean squared error (MSE), and coverage probability across various scenarios, the l0-based CARE

method achieves noticeably higher statistical power.

Figure S29: Power, absolute bias, mean squared error, and coverage of the CARE estimator with
l0 and two l1 algorithms under the main setting with 30% invalid IVs. Power is the empirical power
estimated by the proportion of p-values less than the significance threshold of 0.05. Coverage is
the empirical coverage probability of the 95% confidence interval.

S.8.13 Third sample for selecting IVs

Our method—CARE—effectively integrates winner’s curse correction via Rao-Blackwellization with

robust handling of both measurement error and pleiotropy. However, in scenarios where the winner’s

curse is no longer a concern—for example, when a third independent sample is available for IV

selection based on association strength—some alternative methods may outperform CARE.

To investigate this, we conducted an additional simulation study using a three-sample MR
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Figure S30: Power, absolute bias, mean squared error, and coverage of the CARE estimator with
l0 and two l1 algorithms under the main setting with 50% invalid IVs. Power is the empirical power
estimated by the proportion of p-values less than the significance threshold of 0.05. Coverage is
the empirical coverage probability of the 95% confidence interval.

Figure S31: Power, absolute bias, mean squared error, and coverage of the CARE estimator with
l0 and two l1 algorithms under the setting of uniform distributed effects in correlated pleiotropy
with 50% invalid IVs. Power is the empirical power estimated by the proportion of p-values less
than the significance threshold 0.05. Coverage is the empirical coverage probability of the 95%
confidence interval.
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design. The data generating process is the same as the main setting in our manuscript, which

favors other methods with parametric assumptions (See details in Section S.8.1) In this design, a

third independent sample is used exclusively for IV selection based on association strength, thereby

eliminating the need for winner’s curse correction in all methods. We uniformly apply a liberal IV

selection threshold of p < 5× 10−5 to this third sample across all methods for fair comparison.

As shown in Figure S32, cML outperforms CARE in terms of both power and mean squared

error (MSE), while maintaining comparable empirical coverage. Other methods, such as cML-DP

and IVW, also exhibit competitive performances. These results highlight that when a third sample

is available and winner’s curse correction is unnecessary, CARE may not be the optimal choice.

Figure S32: Power, absolute bias, mean squared error, and coverage of the CARE estimator and
several robust MR methods under the main setting with 50% invalid IVs, all using a third sample
for IV selection based on association strength. Power is the empirical power estimated by the
proportion of p-values less than the significance threshold 0.05. Coverage is the empirical coverage
probability of the 95% confidence interval.
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S.9 Additional Real Data Results

S.9.1 Data harmonization

We harmonize GWAS summary data through the following steps. First, we exclude genetic vari-

ants that are not available in the outcome GWAS dataset. Second, we select independent genetic

variants that have no linkage disequilibrium with other selected genetic variants. No linkage dise-

quilibrium is defined as R-squared < 0.001 with an extension of 10,000 Kb in the genome, which

has been widely adopted in applied MR studies [24]. For the benchmark methods, in line with the

current practice [24], we employ standard clumping, selecting the variant with the smallest p-value

of the SNP-exposure association when genetic variants are in linkage disequilibrium. For the pro-

posed method CARE, we employ a revised sigma-based pruning procedure and select the variant

with the smallest standard deviation of the SNP-exposure association when genetic variants are in

linkage disequilibrium [33]. We employ this revised sigma-based pruning procedure because stan-

dard clumping introduces a different type of selection bias; see [41] for related discussion. Third,

by leveraging allele frequency information, we infer the strand direction of ambiguous SNPs and

harmonize exposure-outcome datasets using the twosampleMR package. We use the default set-

ting with λ = 4.06 and η = 0.5 for our proposed CARE estimator, and set λ = 4.06 and λ = 5.45

for MR-APSS and other benchmark methods, respectively.

S.9.2 Comparative analysis of four MR methods for assessing COVID-19 sever-

ity

Second, we focus on four methods with relatively good performance under our negative control

outcome analysis to alleviate the concerns of false positives. Figure S33 summarizes the results.

First, CARE identifies body mass index (BMI), obesity class 1, obesity class 2, overweight, and

extreme BMI are causally associated with COVID-19 severity. According to the Centers for Disease

Control and Prevention (CDC), the risk of severe illness (i.e., hospitalization) from COVID-19

increases sharply with higher BMI, indicating that extreme BMI may be a likely causal risk factor for

COVID-19 severity. Second, CARE identifies that HDL cholesterol (present in the blood, associated

with a lower risk of coronary heart disease) is causally associated with COVID-19 severity. Low

HDL level in the blood is reported to be associated with COVID-19 severity and most COVID-19
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patients (65%) exhibit severely low HDL levels [36]. In comparison, the competing methods fail

to identify HDL. Third, competing methods such as IVW and cML-DP identify childhood obesity,

and celiac disease as causally associated with COVID-19 severity, while CARE does not. However,

limited evidence supports their roles in COVID-19 severity as these risk factors are not listed on

the CDC website, and hard to find support from the literature, suggesting that these two risk

factors identified by competing methods may be false positives. Fourth, MR-APSS identifies the

waist-to-hip ratio, which has been missed by the other three methods; however, the waist-to-hip

ratio has been reported to have no association with COVID-19 severity [16].

Figure S33: Significant causal exposure COVID-19 severity pairs identified by CARE, cML-DP,
IVW, and MR-APSS. We summarize the significant causal exposure identified by at least one
method under Bonferroni correction.

S.9.3 Supplementary tables and figures for real data results
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GWAS ID Trait # SNP N PMID

ieu-a-298 Alzheimer’s disease* 11,633 74,046 24162737

ieu-a-45 Anorexia nervosa 1,149,254 17,767 24514567

ieu-a-44 Asthma* 546,183 26,475 20860503

ieu-a-806 Autism* 9,499,590 10,263 23453885

ieu-a-801 Bipolar disorder* 2,427,221 16,731 21926972

ieu-a-29 Birth length 2,201,972 28,459 25281659

ieu-a-1083 Birth weight 16,245,524 143,677 27680694

ieu-a-2 Body Mass Index* 2,555,511 339,224 25673413

ieu-a-1109 Cardioembolic stroke 2,421,920 21,185 26935894

ieu-a-1058 Celiac disease 38,037 24,269 22057235

ieu-a-1096 Childhood obesity 2,442,739 13,848 22494627

ieu-a-1102 Chronic kidney disease* 2,191,877 117,165 26831199

ieu-a-7 Coronary heart disease* 9,455,779 123,504 26343387

ieu-a-12 Crohn’s disease* 124,888 51,874 26192919

ieu-a-1000 Depressive symptoms* 6,524,475 161,460 27089181

ieu-a-1040 Difference in height between adolescence and adulthood 2,401,290 9,228 23449627

ieu-a-1037 Difference in height between childhood and adulthood 2,384,832 10,799 23449627

ieu-a-85 Extreme body mass index* 1,984,814 16,068 23563607

ieu-a-86 Extreme height 1,966,557 16,196 23563607

ieu-a-87 Extreme waist-to-hip ratio 1,939,901 10,255 23563607

ieu-a-1054 Gout 2,450,548 69,374 23263486

ieu-a-299 HDL cholesterol* 2,447,442 187,167 24097068

ieu-a-89 Height 2,550,859 253,288 25282103

ieu-a-31 inflammatory bowel disease* 12,716,084 34,652 26192919

ieu-a-814 Ischaemic stroke 393,465 517 17434096

ieu-a-300 LDL cholesterol 2,437,752 173,082 24097068

ieu-a-965 Lung adenocarcinoma* 8,881,354 18,336 24880342

ieu-a-966 Lung cancer* 8,945,893 27,209 24880342
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GWAS ID Trait # SNP N PMID

ieu-a-1025 Multiple sclerosis* 156,632 38,589 24076602

ieu-a-798 Mycocardial infarction* 9,289,492 171,875 26343387

ieu-a-1007 Neuroticism 6,524,433 170,911 27089181

ieu-a-90 Obesity class 1* 2,380,428 98,697 23563607

ieu-a-91 Obesity class 2* 2,331,456 72,546 23563607

ieu-a-92 Obesity class 3* 2,250,779 50,364 23563607

ieu-a-93 Overweight* 2,435,045 158,855 23563607

ieu-a-975 Paget’s disease 2,479,235 3,440 21623375

ieu-a-812 Parkinson’s disease* 453,218 5,691 19915575

ieu-a-833 Rheumatoid arthritis* 9,739,304 80,799 24390342

ieu-a-22 Schizophrenia* 9,444,231 82,315 25056061

ieu-a-967 Squamous cell lung cancer 8,893,750 18,313 24880342

ieu-a-1009 Subjective well being 2,268,675 298,420 27089181

ieu-a-301 Total cholesterol 2,446,982 187,365 24097068

ieu-a-26 Type 2 diabetes* 2,473,442 69,033 22885922

ieu-a-970 Ulcerative colitis 156,116 47,745 26192919

ieu-a-72 Waist-to-hip ratio 2,562,516 224,459 25673412

ukb-b-553 Ease of skin tanning 9,851,867 453,065

ukb-d-1747 1 Hair colour (natural, before greying): Blonde 13,586,531 360,270

ukb-d-1747 2 Hair colour (natural, before greying): Red 13,586,531 360,270

ukb-d-1747 3 Hair colour (natural, before greying): Light brown 13,586,531 360,270

ukb-d-1747 4 Hair colour (natural, before greying): Dark brown 13,586,531 360,270

ukb-d-1747 5 Hair colour (natural, before greying): Black 13,586,531 360,270

Table 1: 45 exposures and six negative control outcomes included in the current study. GWAS ID,
Trait, # SNP, N, and PMID stand GWAS ID used in IEU OpenGWAS database, exposure name,
number of SNPs in the corresponding full GWAS summary data, sample size of the corresponding
study, and PMID used in PubMed, respectively. Traits with stars represent those have been
reported by the CDC or in peer-reviewed literature as risk factors for COVID-19 severity.
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Figure S34: QQ plots of p-values in negative control outcome analysis for fixed-effect IVW (panel
A) and CARE using clumping to select candidate IVs (panel B). The gray-shaded part is 95%
confidence interval.

Condition
CARE cML-DP IVW MR-APSS

β SE p-value β SE p-value β SE p-value β SE p-value

Body mass index 0.3893 0.0595 5.96E-11 0.3952 0.0533 1.22E-13 0.4024 0.0580 4.11E-12 0.4006 0.1008 7.00E-05
Celiac disease 0.0213 0.0189 0.2603 0.0293 0.0089 0.0011 0.0299 0.0086 0.0005 0.0200 0.0166 0.2291
Childhood obesity 0.0749 0.0280 0.0074 0.0915 0.0226 5.49E-05 0.0946 0.0230 3.88E-05 0.0540 0.0231 0.0192
Extreme body mass index 0.0746 0.0194 0.0001 0.0561 0.0212 0.0081 0.0545 0.0191 0.0042 0.0622 0.0180 0.0005
HDL cholesterol -0.1840 0.0509 0.0003 -0.0598 0.0315 0.0573 -0.0809 0.0359 0.0244 -0.1177 0.0836 0.1591
Obesity class 1 0.1916 0.0379 4.27E-07 0.1312 0.0254 2.47E-07 0.1288 0.0257 5.61E-07 0.1461 0.0307 2.01E-06
Obesity class 2 0.0924 0.0266 0.0005 0.0805 0.0222 0.0003 0.0793 0.0245 0.0012 0.0549 0.0203 0.0069
Overweight 0.2184 0.0602 0.0003 0.1475 0.0407 0.0003 0.1487 0.0443 0.0008 0.1621 0.0514 0.0016
Waist-to-hip ratio 0.3279 0.1139 0.0040 0.1980 0.0841 0.0186 0.2134 0.0842 0.0113 0.4114 0.0990 3.27E-05

Table 2: Association between significant exposure COVID-19 severity pairs using four methods:
CARE, cML-DP, IVW, and MR-APSS. Values represent effect sizes (β), standard errors (SE), and
p-values.
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